saim1309 commited on
Commit
4683e68
·
verified ·
1 Parent(s): 987da0c

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +369 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import json
4
+ import cv2
5
+ import numpy as np
6
+ from sklearn.cluster import KMeans
7
+
8
+ # ----------------- Config -----------------
9
+ RESIZE_MAX = 1600
10
+ MIN_AREA = 300
11
+ MAX_AREA = 120000
12
+ APPROX_EPS = 0.06
13
+ IOU_NMS = 0.25
14
+ COLOR_CLUSTER_N = 6
15
+ SAT_MIN = 20
16
+ VAL_MIN = 20
17
+ ROW_TOL = 0.75
18
+ AREA_FILTER_THRESH = 0.35
19
+
20
+ # ----------------- Utility Functions -----------------
21
+ def load_and_resize(img_or_path, max_dim=RESIZE_MAX):
22
+ if isinstance(img_or_path, str): # file path
23
+ img = cv2.imread(img_or_path)
24
+ if img is None:
25
+ raise FileNotFoundError(f"Image not found: {img_or_path}")
26
+ elif isinstance(img_or_path, np.ndarray): # already loaded
27
+ img = img_or_path.copy()
28
+ else:
29
+ raise ValueError("Input must be a file path or a numpy array")
30
+
31
+ h, w = img.shape[:2]
32
+ if max(h, w) > max_dim:
33
+ scale = max_dim / float(max(h, w))
34
+ img = cv2.resize(img, (int(w * scale), int(h * scale)), interpolation=cv2.INTER_AREA)
35
+ return img
36
+
37
+
38
+ def non_max_suppression(boxes, iou_thresh=IOU_NMS):
39
+ if not boxes:
40
+ return []
41
+ arr = np.array(boxes, dtype=float)
42
+ x1 = arr[:, 0]; y1 = arr[:, 1]; x2 = arr[:, 0] + arr[:, 2]; y2 = arr[:, 1] + arr[:, 3]
43
+ areas = (x2 - x1) * (y2 - y1)
44
+ order = areas.argsort()[::-1]
45
+ keep = []
46
+ while order.size > 0:
47
+ i = order[0]
48
+ keep.append(tuple(arr[i].astype(int)))
49
+ xx1 = np.maximum(x1[i], x1[order[1:]])
50
+ yy1 = np.maximum(y1[i], y1[order[1:]])
51
+ xx2 = np.minimum(x2[i], x2[order[1:]])
52
+ yy2 = np.minimum(y2[i], y2[order[1:]])
53
+ w = np.maximum(0.0, xx2 - xx1)
54
+ h = np.maximum(0.0, yy2 - yy1)
55
+ inter = w * h
56
+ union = areas[i] + areas[order[1:]] - inter
57
+ iou = inter / (union + 1e-8)
58
+ inds = np.where(iou <= iou_thresh)[0]
59
+ order = order[inds + 1]
60
+ return keep
61
+
62
+ def color_cluster_masks(img, n_clusters=COLOR_CLUSTER_N):
63
+ lab = cv2.cvtColor(img, cv2.COLOR_BGR2LAB)
64
+ h, w = lab.shape[:2]
65
+ pixels = lab.reshape(-1, 3).astype(np.float32)
66
+ max_samples = 30000
67
+ if pixels.shape[0] > max_samples:
68
+ rng = np.random.default_rng(0)
69
+ sample_idx = rng.choice(pixels.shape[0], max_samples, replace=False)
70
+ sample = pixels[sample_idx]
71
+ else:
72
+ sample = pixels
73
+ n_clusters = min(n_clusters, max(1, sample.shape[0]))
74
+ kmeans = KMeans(n_clusters=n_clusters, random_state=0, n_init=8).fit(sample)
75
+ centers = kmeans.cluster_centers_
76
+ centers_f = centers.astype(np.float32).reshape(1, 1, n_clusters, 3)
77
+ lab_f = lab.astype(np.float32).reshape(h, w, 1, 3)
78
+ diff = lab_f - centers_f
79
+ dist = np.linalg.norm(diff, axis=3)
80
+ labels = np.argmin(dist, axis=2).astype(np.int32)
81
+ masks = [(labels == k).astype(np.uint8) * 255 for k in range(n_clusters)]
82
+ return masks
83
+
84
+ def refine_mask_by_hsv(mask, img, sat_min=SAT_MIN, val_min=VAL_MIN):
85
+ hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
86
+ s = hsv[:, :, 1]; v = hsv[:, :, 2]
87
+ sv_mask = (s >= sat_min) & (v >= val_min)
88
+ refined = mask.copy()
89
+ refined[~sv_mask] = 0
90
+ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
91
+ refined = cv2.morphologyEx(refined, cv2.MORPH_CLOSE, kernel, iterations=2)
92
+ refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel, iterations=1)
93
+ return refined
94
+
95
+ def contours_from_mask(mask):
96
+ cnts, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
97
+ rects = []
98
+ for c in cnts:
99
+ area = cv2.contourArea(c)
100
+ if area < MIN_AREA or area > MAX_AREA:
101
+ continue
102
+ peri = cv2.arcLength(c, True)
103
+ approx = cv2.approxPolyDP(c, APPROX_EPS * peri, True)
104
+ x, y, w, h = cv2.boundingRect(approx)
105
+ if h == 0 or w == 0:
106
+ continue
107
+ ar = w / float(h)
108
+ if 0.12 < ar < 8:
109
+ rects.append((x, y, w, h))
110
+ return rects
111
+
112
+ def mser_candidates(img):
113
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
114
+ mser = cv2.MSER_create()
115
+ mser.setMinArea(60)
116
+ mser.setMaxArea(MAX_AREA)
117
+ regions, _ = mser.detectRegions(gray)
118
+ rects = []
119
+ for r in regions:
120
+ x, y, w, h = cv2.boundingRect(r.reshape(-1, 1, 2))
121
+ area = w * h
122
+ if area < MIN_AREA or area > MAX_AREA:
123
+ continue
124
+ ar = w / float(h) if h > 0 else 0
125
+ if 0.25 < ar < 4.0:
126
+ rects.append((x, y, w, h))
127
+ return rects
128
+
129
+ def collect_candidates(img):
130
+ masks = color_cluster_masks(img, n_clusters=COLOR_CLUSTER_N)
131
+ cluster_rects = []
132
+ for m in masks:
133
+ refined = refine_mask_by_hsv(m, img)
134
+ rects = contours_from_mask(refined)
135
+ cluster_rects.extend(rects)
136
+ mser_rects = mser_candidates(img)
137
+ all_rects = cluster_rects + mser_rects
138
+ nms = non_max_suppression(all_rects, IOU_NMS)
139
+ return nms
140
+
141
+ def filter_by_area(rects):
142
+ if not rects:
143
+ return rects
144
+ areas = np.array([w * h for (_, _, w, h) in rects], dtype=float)
145
+ avg_area = np.mean(areas)
146
+ lower = avg_area * (1.0 - AREA_FILTER_THRESH)
147
+ upper = avg_area * (1.0 + AREA_FILTER_THRESH)
148
+ return [r for r, a in zip(rects, areas) if lower <= a <= upper]
149
+
150
+ def group_rows(rects, tol=ROW_TOL):
151
+ if not rects:
152
+ return []
153
+ rects = sorted(rects, key=lambda b: b[1])
154
+ rows = [[rects[0]]]
155
+ for r in rects[1:]:
156
+ prev = rows[-1][-1]
157
+ y1 = prev[1] + prev[3] / 2.0
158
+ y2 = r[1] + r[3] / 2.0
159
+ avg_h = (prev[3] + r[3]) / 2.0
160
+ if abs(y1 - y2) <= tol * avg_h:
161
+ rows[-1].append(r)
162
+ else:
163
+ rows.append([r])
164
+ return rows
165
+
166
+ def group_columns(rects, tol=ROW_TOL):
167
+ if not rects:
168
+ return []
169
+ rects = sorted(rects, key=lambda b: b[0])
170
+ cols = [[rects[0]]]
171
+ for r in rects[1:]:
172
+ prev = cols[-1][-1]
173
+ x1 = prev[0] + prev[2] / 2.0
174
+ x2 = r[0] + r[2] / 2.0
175
+ avg_w = (prev[2] + r[2]) / 2.0
176
+ if abs(x1 - x2) <= tol * avg_w:
177
+ cols[-1].append(r)
178
+ else:
179
+ cols.append([r])
180
+ return cols
181
+
182
+ def fill_missing_boxes(img, reference_rects, row_tol=ROW_TOL, col_tol=ROW_TOL):
183
+ if not reference_rects:
184
+ return []
185
+ areas = [w * h for (_, _, w, h) in reference_rects]
186
+ rounded_areas = [int(a // 100) * 100 for a in areas]
187
+ unique, counts = np.unique(rounded_areas, return_counts=True)
188
+ most_common_area = unique[np.argmax(counts)]
189
+ closest_box = min(reference_rects, key=lambda r: abs((r[2]*r[3]) - most_common_area))
190
+ avg_w, avg_h = int(closest_box[2]), int(closest_box[3])
191
+ rows = group_rows(reference_rects, tol=row_tol)
192
+ cols = group_columns(reference_rects, tol=col_tol)
193
+ if not rows or not cols:
194
+ return []
195
+ row_ys = [int(np.mean([y+h/2.0 for (x,y,w,h) in r])) for r in rows]
196
+ col_xs = [int(np.mean([x+w/2.0 for (x,y,w,h) in c])) for c in cols]
197
+ centers_existing = [(int(x+w/2), int(y+h/2)) for (x,y,w,h) in reference_rects]
198
+ synth_boxes = []
199
+ tol_x = avg_w * 0.45
200
+ tol_y = avg_h * 0.45
201
+ for ry in row_ys:
202
+ for cx in col_xs:
203
+ exists = any(abs(ex[0]-cx)<tol_x and abs(ex[1]-ry)<tol_y for ex in centers_existing)
204
+ if not exists:
205
+ x = int(cx - avg_w/2)
206
+ y = int(ry - avg_h/2)
207
+ synth_boxes.append({'x': x, 'y': y, 'w': avg_w, 'h': avg_h, 'synthetic': True})
208
+ return synth_boxes
209
+
210
+ def split_left_right(rects, img, left_frac):
211
+ if not rects:
212
+ return [], []
213
+ h, w = img.shape[:2]
214
+ left = [r for r in rects if (r[0] + r[2]/2.0) < left_frac * w]
215
+ right = [r for r in rects if r not in left]
216
+ return sorted(left, key=lambda b: b[1]), sorted(right, key=lambda b: (b[1], b[0]))
217
+
218
+ def match_left_to_right(left_boxes, right_boxes):
219
+ mapping = {}
220
+ for i, tb in enumerate(left_boxes):
221
+ key = f"test_box_{i+1}"
222
+ tx, ty, tw, th = tb
223
+ tcy = ty + th/2.0
224
+ mapping[key] = {"test_box": [int(tx), int(ty), int(tw), int(th)], "matched_refs": []}
225
+ for rb in right_boxes:
226
+ x, y, w, h = rb['x'], rb['y'], rb['w'], rb['h']
227
+ cy = y + h/2.0
228
+ avg_h = (th + h)/2.0
229
+ if abs(tcy - cy) <= ROW_TOL * avg_h:
230
+ mapping[key]["matched_refs"].append({k:int(v) for k,v in rb.items() if k!="synthetic"})
231
+ return mapping
232
+
233
+ def visualize(img, left, right, mapping):
234
+ vis = img.copy()
235
+ for i, tb in enumerate(left):
236
+ x,y,w,h = tb
237
+ cv2.rectangle(vis, (x,y), (x+w,y+h), (255,0,0), 2)
238
+ cv2.putText(vis, f"T{i+1}", (x,y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (255,0,0), 1)
239
+ for j, rb in enumerate(right):
240
+ color = (0,180,0) if rb.get('synthetic', False) else (0,255,0)
241
+ cv2.rectangle(vis, (rb['x'], rb['y']), (rb['x']+rb['w'], rb['y']+rb['h']), color, 1)
242
+ cv2.putText(vis, f"R{j+1}", (rb['x'], rb['y']-6), cv2.FONT_HERSHEY_SIMPLEX, 0.4, color, 1)
243
+ for i, tb in enumerate(left):
244
+ key = f"test_box_{i+1}"
245
+ tx, ty, tw, th = tb
246
+ tcx, tcy = int(tx + tw/2), int(ty + th/2)
247
+ for rb in mapping[key]["matched_refs"]:
248
+ rcx = int(rb["x"] + rb["w"]/2)
249
+ rcy = int(rb["y"] + rb["h"]/2)
250
+ cv2.line(vis, (tcx,tcy), (rcx,rcy), (0,0,255), 1)
251
+ vis_rgb = cv2.cvtColor(vis, cv2.COLOR_BGR2RGB)
252
+ return vis_rgb
253
+ def keep_one_box_per_row(rects, reference_rects=None, row_tol=ROW_TOL):
254
+ """
255
+ Keep only one representative box per row.
256
+ Selection score for each box in a row is based on:
257
+ - closeness of box area to expected (dominant) area
258
+ - closeness of aspect ratio (w/h) to expected aspect ratio
259
+ - small penalty for very skinny or very flat boxes
260
+ reference_rects: list of all detected rects (used to compute expected area/aspect ratio).
261
+ """
262
+ if not rects:
263
+ return rects
264
+
265
+ # Compute expected statistics from reference_rects (fallback to rects if None)
266
+ ref = reference_rects if (reference_rects and len(reference_rects) > 0) else rects
267
+ areas_ref = np.array([w * h for (_, _, w, h) in ref], dtype=float)
268
+ ars_ref = np.array([w / float(h) for (_, _, w, h) in ref], dtype=float)
269
+
270
+ # Robust central estimates (median)
271
+ expected_area = float(np.median(areas_ref))
272
+ expected_ar = float(np.median(ars_ref))
273
+
274
+ # Safety floor
275
+ if expected_area <= 0:
276
+ expected_area = np.mean(areas_ref) if len(areas_ref) else 1.0
277
+ if expected_ar <= 0:
278
+ expected_ar = 1.0
279
+
280
+ # Group rectangles into rows by vertical center proximity
281
+ rects_sorted = sorted(rects, key=lambda b: b[1])
282
+ rows = [[rects_sorted[0]]]
283
+ for r in rects_sorted[1:]:
284
+ y_center = r[1] + r[3] / 2.0
285
+ last = rows[-1][-1]
286
+ last_center = last[1] + last[3] / 2.0
287
+ avg_h = (r[3] + last[3]) / 2.0
288
+ if abs(y_center - last_center) <= row_tol * avg_h:
289
+ rows[-1].append(r)
290
+ else:
291
+ rows.append([r])
292
+
293
+ kept = []
294
+ for group in rows:
295
+ if len(group) == 1:
296
+ kept.append(group[0])
297
+ continue
298
+
299
+ # Compute a score for each candidate; lower is better
300
+ scores = []
301
+ for (x, y, w, h) in group:
302
+ area = w * h
303
+ ar = w / float(h) if h > 0 else 0.0
304
+
305
+ # area closeness: use log-ratio so relative differences are symmetric
306
+ area_score = abs(np.log((area + 1e-6) / (expected_area + 1e-6)))
307
+
308
+ # aspect ratio closeness (normalized)
309
+ ar_score = abs(ar - expected_ar) / (expected_ar + 1e-6)
310
+
311
+ # penalty for extremely skinny or extremely tall flat boxes
312
+ penalty = 0.0
313
+ if ar < 0.25: # very skinny tall
314
+ penalty += 1.0
315
+ if ar > 4.0: # very wide flat (unlikely in left column but defensive)
316
+ penalty += 0.6
317
+
318
+ # small preference toward boxes centered horizontally in the row (optional)
319
+ # compute row median x center
320
+ group_centers_x = [g[0] + g[2]/2.0 for g in group]
321
+ median_cx = float(np.median(group_centers_x))
322
+ cx = x + w/2.0
323
+ center_score = abs(cx - median_cx) / (expected_ar * np.sqrt(expected_area) + 1.0)
324
+
325
+ # combine scores with weights (tune if needed)
326
+ score = (2.0 * area_score) + (1.2 * ar_score) + (0.5 * center_score) + penalty
327
+ scores.append(score)
328
+
329
+ best_idx = int(np.argmin(scores))
330
+ best_box = group[best_idx]
331
+ kept.append(best_box)
332
+
333
+ # optional: sort kept boxes by y
334
+ kept = sorted(kept, key=lambda b: b[1])
335
+ print(f"Kept {len(kept)} boxes (one per row) out of {len(rects)} candidates.")
336
+ return kept
337
+
338
+ # ----------------- Pipeline -----------------
339
+ def process_image(image, left_frac):
340
+ img_bgr = load_and_resize(image)
341
+ rects = collect_candidates(img_bgr)
342
+ rects = filter_by_area(rects)
343
+ synth = fill_missing_boxes(img_bgr, rects)
344
+ all_boxes = rects + [(b['x'], b['y'], b['w'], b['h']) for b in synth]
345
+ left, right = split_left_right(all_boxes, img_bgr, left_frac)
346
+ left = keep_one_box_per_row(left)
347
+ right_with_synth = [{'x':x,'y':y,'w':w,'h':h,'synthetic':False} for (x,y,w,h) in right] + synth
348
+ mapping = match_left_to_right(left, right_with_synth)
349
+ result = visualize(img_bgr, left, right_with_synth, mapping)
350
+ return result
351
+
352
+ # ----------------- Gradio App -----------------
353
+ title = "Grid Detection & Matching Viewer"
354
+ description = "Upload an image, adjust the Left/Right threshold, and view final matching visualization."
355
+
356
+ iface = gr.Interface(
357
+ fn=process_image,
358
+ inputs=[
359
+ gr.Image(type="numpy", label="Upload Image"),
360
+ gr.Slider(0.1, 0.9, value=0.35, step=0.01, label="Left Fraction Threshold (LEFT_FRAC_FALLBACK)")
361
+ ],
362
+ outputs=gr.Image(label="Matched Output", type="numpy"),
363
+ title=title,
364
+ description=description,
365
+ examples=None
366
+ )
367
+
368
+ if __name__ == "__main__":
369
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio
2
+ opencv-python-headless
3
+ numpy
4
+ scikit-learn