Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import nltk | |
nltk.download('punkt') | |
from nltk.tokenize import sent_tokenize | |
import streamlit as st | |
def load_model(model_id): | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained(model_id) | |
return tokenizer, model | |
model_id = "asi/gpt-fr-cased-small" | |
tokenizer_fr, model_fr = load_model(model_id) | |
model_id = "gpt2" | |
tokenizer_en, model_en = load_model(model_id) | |
model_id = "dbmdz/german-gpt2" | |
tokenizer_de, model_de = load_model(model_id) | |
with st.form(key='Form'): | |
text = st.text_area("Enter text here.") | |
option = st.selectbox('Select Language',('English', 'German', 'French')) | |
submitted = st.form_submit_button("Submit") | |
if submitted: | |
text = text.replace('\n', '') | |
with torch.no_grad(): | |
if option == 'German': | |
encodings = tokenizer_de(text, return_tensors="pt") | |
input_ids = encodings.input_ids | |
target_ids = input_ids.clone() | |
loss = model_de(input_ids, labels=target_ids).loss | |
elif option == 'English': | |
encodings = tokenizer_en(text, return_tensors="pt") | |
input_ids = encodings.input_ids | |
target_ids = input_ids.clone() | |
loss = model_en(input_ids, labels=target_ids).loss | |
else: | |
encodings = tokenizer_fr(text, return_tensors="pt") | |
input_ids = encodings.input_ids | |
target_ids = input_ids.clone() | |
loss = model_fr(input_ids, labels=target_ids).loss | |
st.write("Entire Text") | |
st.write("Perplexity: ", round(float(torch.exp(loss)), 2)) | |
for sentence in sent_tokenize(text): | |
st.write("________________________") | |
st.write(sentence) | |
with torch.no_grad(): | |
if option == 'German': | |
encodings = tokenizer_de(sentence, return_tensors="pt") | |
input_ids = encodings.input_ids | |
target_ids = input_ids.clone() | |
loss = model_de(input_ids, labels=target_ids).loss | |
elif option == 'English': | |
encodings = tokenizer_en(sentence, return_tensors="pt") | |
input_ids = encodings.input_ids | |
target_ids = input_ids.clone() | |
loss = model_en(input_ids, labels=target_ids).loss | |
else: | |
encodings = tokenizer_fr(sentence, return_tensors="pt") | |
input_ids = encodings.input_ids | |
target_ids = input_ids.clone() | |
loss = model_fr(input_ids, labels=target_ids).loss | |
st.write("Perplexity: ", round(float(torch.exp(loss)), 2)) |