barghavani's picture
Update app.py
5353c1d verified
raw
history blame
3.89 kB
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
import speech_recognition as sr
import sounddevice as sd
import scipy.io.wavfile as wav
load_dotenv()
os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
def get_pdf_text(pdf_docs):
text=""
for pdf in pdf_docs:
pdf_reader= PdfReader(pdf)
for page in pdf_reader.pages:
text+= page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
def get_conversational_chain():
prompt_template = """
Answer the question as detailed as possible from the provided context, make sure to provide all the details, if the answer is not in
provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
Context:\n {context}?\n
Question: \n{question}\n
Answer:
"""
model = ChatGoogleGenerativeAI(model="gemini-pro",
temperature=0.3)
prompt = PromptTemplate(template = prompt_template, input_variables = ["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
return chain
def user_input(user_question):
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
response = chain(
{"input_documents":docs, "question": user_question}
, return_only_outputs=True)
print(response)
st.write("Reply: ", response["output_text"])
# Constants
DURATION = 5 # seconds
SAMPLERATE = 44100 # Hz
def record_audio():
st.write("Recording for {} seconds...".format(DURATION))
audio = sd.rec(int(DURATION * SAMPLERATE), samplerate=SAMPLERATE, channels=2, dtype='float64')
sd.wait() # Wait until recording is finished
wav.write('temp_audio.wav', SAMPLERATE, audio) # Save as WAV file (optional)
st.write("Recording finished. Processing the audio...")
return 'temp_audio.wav' # Return path to the audio file
def main():
st.set_page_config("Chat PDF")
st.header("Chat with PDF using Gemini💁")
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
get_vector_store(text_chunks)
st.success("Done")
user_question = st.text_input("Ask a Question from the PDF Files")
if st.button("Record Question via Microphone"):
audio_path = record_audio()
# Implement audio processing to text or use a service like Google Speech-to-Text here
# user_question = transcribe_audio(audio_path) # You'd need to implement this function
if user_question:
user_input(user_question)
if __name__ == "__main__":
main()