Spaces:
Sleeping
Sleeping
Add VibeAtlas Code Search Playground demo
Browse files- README.md +50 -7
- app.py +453 -0
- requirements.txt +5 -0
README.md
CHANGED
|
@@ -1,12 +1,55 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: VibeAtlas Code Search Playground
|
| 3 |
+
emoji: π
|
| 4 |
+
colorFrom: indigo
|
| 5 |
+
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.0.0
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
license: apache-2.0
|
| 11 |
+
short_description: Semantic code search powered by UniXcoder
|
| 12 |
+
tags:
|
| 13 |
+
- code-search
|
| 14 |
+
- semantic-search
|
| 15 |
+
- embeddings
|
| 16 |
+
- vibeatlas
|
| 17 |
+
- unixcoder
|
| 18 |
---
|
| 19 |
|
| 20 |
+
# VibeAtlas Code Search Playground π
|
| 21 |
+
|
| 22 |
+
Experience semantic code search powered by UniXcoder embeddings.
|
| 23 |
+
|
| 24 |
+
## Features
|
| 25 |
+
|
| 26 |
+
- **Natural Language β Code Search**: Find code using everyday language
|
| 27 |
+
- **Cross-Language Matching**: Find similar patterns across Python, JavaScript, TypeScript
|
| 28 |
+
- **Semantic Understanding**: Understands code intent, not just keywords
|
| 29 |
+
|
| 30 |
+
## Try It
|
| 31 |
+
|
| 32 |
+
1. Enter a search query like "user authentication with password"
|
| 33 |
+
2. See semantically similar code snippets
|
| 34 |
+
3. Compare results across languages
|
| 35 |
+
|
| 36 |
+
## Get It In Your IDE
|
| 37 |
+
|
| 38 |
+
```bash
|
| 39 |
+
code --install-extension vibeatlas.vibeatlas
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
## Links
|
| 43 |
+
|
| 44 |
+
- π [Website](https://vibeatlas.dev)
|
| 45 |
+
- π¦ [VS Code Extension](https://marketplace.visualstudio.com/items?itemName=vibeatlas.vibeatlas)
|
| 46 |
+
- π οΈ [GitHub](https://github.com/vibeatlas)
|
| 47 |
+
|
| 48 |
+
## Model
|
| 49 |
+
|
| 50 |
+
This demo uses [vibeatlas/unixcoder-base-onnx](https://huggingface.co/vibeatlas/unixcoder-base-onnx),
|
| 51 |
+
our ONNX conversion of Microsoft's UniXcoder for browser/Node.js use.
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
Made with β€οΈ by [VibeAtlas](https://vibeatlas.dev)
|
app.py
ADDED
|
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
VibeAtlas Code Search Playground
|
| 3 |
+
================================
|
| 4 |
+
|
| 5 |
+
Interactive demo for semantic code search using UniXcoder embeddings.
|
| 6 |
+
Deploy to HuggingFace Spaces: https://huggingface.co/spaces/vibeatlas/code-search-playground
|
| 7 |
+
|
| 8 |
+
Features:
|
| 9 |
+
- Natural language β Code search
|
| 10 |
+
- Code β Similar code search
|
| 11 |
+
- Cross-language pattern matching
|
| 12 |
+
- Real-time embedding visualization
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import numpy as np
|
| 17 |
+
from typing import List, Tuple
|
| 18 |
+
import json
|
| 19 |
+
|
| 20 |
+
# For local testing without GPU
|
| 21 |
+
try:
|
| 22 |
+
from transformers import AutoModel, AutoTokenizer
|
| 23 |
+
import torch
|
| 24 |
+
TORCH_AVAILABLE = True
|
| 25 |
+
except ImportError:
|
| 26 |
+
TORCH_AVAILABLE = False
|
| 27 |
+
print("Warning: PyTorch not available, using mock embeddings")
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Sample code corpus for demonstration
|
| 31 |
+
SAMPLE_CORPUS = [
|
| 32 |
+
{
|
| 33 |
+
"id": "auth-js-1",
|
| 34 |
+
"language": "javascript",
|
| 35 |
+
"code": """function authenticate(username, password) {
|
| 36 |
+
const user = findUser(username);
|
| 37 |
+
if (!user) return { success: false, error: 'User not found' };
|
| 38 |
+
|
| 39 |
+
const isValid = verifyPassword(password, user.hashedPassword);
|
| 40 |
+
if (!isValid) return { success: false, error: 'Invalid password' };
|
| 41 |
+
|
| 42 |
+
return { success: true, token: generateToken(user) };
|
| 43 |
+
}""",
|
| 44 |
+
"description": "User authentication with password verification"
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"id": "auth-py-1",
|
| 48 |
+
"language": "python",
|
| 49 |
+
"code": """def authenticate(username: str, password: str) -> dict:
|
| 50 |
+
user = find_user(username)
|
| 51 |
+
if not user:
|
| 52 |
+
return {"success": False, "error": "User not found"}
|
| 53 |
+
|
| 54 |
+
is_valid = verify_password(password, user.hashed_password)
|
| 55 |
+
if not is_valid:
|
| 56 |
+
return {"success": False, "error": "Invalid password"}
|
| 57 |
+
|
| 58 |
+
return {"success": True, "token": generate_token(user)}""",
|
| 59 |
+
"description": "Python authentication function"
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"id": "date-js-1",
|
| 63 |
+
"language": "javascript",
|
| 64 |
+
"code": """function formatDate(date, format = 'YYYY-MM-DD') {
|
| 65 |
+
const year = date.getFullYear();
|
| 66 |
+
const month = String(date.getMonth() + 1).padStart(2, '0');
|
| 67 |
+
const day = String(date.getDate()).padStart(2, '0');
|
| 68 |
+
|
| 69 |
+
return format
|
| 70 |
+
.replace('YYYY', year)
|
| 71 |
+
.replace('MM', month)
|
| 72 |
+
.replace('DD', day);
|
| 73 |
+
}""",
|
| 74 |
+
"description": "Date formatting utility"
|
| 75 |
+
},
|
| 76 |
+
{
|
| 77 |
+
"id": "validate-email-1",
|
| 78 |
+
"language": "typescript",
|
| 79 |
+
"code": """function validateEmail(email: string): boolean {
|
| 80 |
+
const emailRegex = /^[^\\s@]+@[^\\s@]+\\.[^\\s@]+$/;
|
| 81 |
+
return emailRegex.test(email);
|
| 82 |
+
}""",
|
| 83 |
+
"description": "Email validation with regex"
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"id": "fetch-api-1",
|
| 87 |
+
"language": "javascript",
|
| 88 |
+
"code": """async function fetchData(url, options = {}) {
|
| 89 |
+
try {
|
| 90 |
+
const response = await fetch(url, {
|
| 91 |
+
headers: { 'Content-Type': 'application/json' },
|
| 92 |
+
...options
|
| 93 |
+
});
|
| 94 |
+
|
| 95 |
+
if (!response.ok) {
|
| 96 |
+
throw new Error(`HTTP error! status: ${response.status}`);
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
return await response.json();
|
| 100 |
+
} catch (error) {
|
| 101 |
+
console.error('Fetch error:', error);
|
| 102 |
+
throw error;
|
| 103 |
+
}
|
| 104 |
+
}""",
|
| 105 |
+
"description": "Async fetch wrapper with error handling"
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"id": "sort-array-1",
|
| 109 |
+
"language": "python",
|
| 110 |
+
"code": """def sort_by_key(items: list, key: str, reverse: bool = False) -> list:
|
| 111 |
+
return sorted(items, key=lambda x: x.get(key, ''), reverse=reverse)""",
|
| 112 |
+
"description": "Sort list of dicts by key"
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"id": "cache-decorator-1",
|
| 116 |
+
"language": "python",
|
| 117 |
+
"code": """from functools import lru_cache
|
| 118 |
+
|
| 119 |
+
@lru_cache(maxsize=128)
|
| 120 |
+
def expensive_computation(n: int) -> int:
|
| 121 |
+
if n < 2:
|
| 122 |
+
return n
|
| 123 |
+
return expensive_computation(n - 1) + expensive_computation(n - 2)""",
|
| 124 |
+
"description": "Memoized fibonacci with LRU cache"
|
| 125 |
+
},
|
| 126 |
+
{
|
| 127 |
+
"id": "middleware-1",
|
| 128 |
+
"language": "javascript",
|
| 129 |
+
"code": """function authMiddleware(req, res, next) {
|
| 130 |
+
const token = req.headers.authorization?.split(' ')[1];
|
| 131 |
+
|
| 132 |
+
if (!token) {
|
| 133 |
+
return res.status(401).json({ error: 'No token provided' });
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
try {
|
| 137 |
+
const decoded = jwt.verify(token, process.env.JWT_SECRET);
|
| 138 |
+
req.user = decoded;
|
| 139 |
+
next();
|
| 140 |
+
} catch (error) {
|
| 141 |
+
res.status(403).json({ error: 'Invalid token' });
|
| 142 |
+
}
|
| 143 |
+
}""",
|
| 144 |
+
"description": "JWT authentication middleware for Express"
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"id": "class-user-1",
|
| 148 |
+
"language": "typescript",
|
| 149 |
+
"code": """class UserService {
|
| 150 |
+
private users: Map<string, User> = new Map();
|
| 151 |
+
|
| 152 |
+
async createUser(data: CreateUserDTO): Promise<User> {
|
| 153 |
+
const user = new User(data);
|
| 154 |
+
this.users.set(user.id, user);
|
| 155 |
+
return user;
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
async findById(id: string): Promise<User | undefined> {
|
| 159 |
+
return this.users.get(id);
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
async updateUser(id: string, data: Partial<User>): Promise<User> {
|
| 163 |
+
const user = await this.findById(id);
|
| 164 |
+
if (!user) throw new Error('User not found');
|
| 165 |
+
Object.assign(user, data);
|
| 166 |
+
return user;
|
| 167 |
+
}
|
| 168 |
+
}""",
|
| 169 |
+
"description": "User service with CRUD operations"
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"id": "react-hook-1",
|
| 173 |
+
"language": "typescript",
|
| 174 |
+
"code": """function useDebounce<T>(value: T, delay: number): T {
|
| 175 |
+
const [debouncedValue, setDebouncedValue] = useState(value);
|
| 176 |
+
|
| 177 |
+
useEffect(() => {
|
| 178 |
+
const handler = setTimeout(() => {
|
| 179 |
+
setDebouncedValue(value);
|
| 180 |
+
}, delay);
|
| 181 |
+
|
| 182 |
+
return () => clearTimeout(handler);
|
| 183 |
+
}, [value, delay]);
|
| 184 |
+
|
| 185 |
+
return debouncedValue;
|
| 186 |
+
}""",
|
| 187 |
+
"description": "React debounce hook for input handling"
|
| 188 |
+
}
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
class CodeSearchEngine:
|
| 193 |
+
"""Simple code search engine using embeddings."""
|
| 194 |
+
|
| 195 |
+
def __init__(self):
|
| 196 |
+
self.corpus = SAMPLE_CORPUS
|
| 197 |
+
self.embeddings = None
|
| 198 |
+
self.model = None
|
| 199 |
+
self.tokenizer = None
|
| 200 |
+
self._initialize_model()
|
| 201 |
+
|
| 202 |
+
def _initialize_model(self):
|
| 203 |
+
"""Initialize the embedding model."""
|
| 204 |
+
if TORCH_AVAILABLE:
|
| 205 |
+
try:
|
| 206 |
+
# Try to load UniXcoder (or fallback to a smaller model)
|
| 207 |
+
model_name = "microsoft/unixcoder-base"
|
| 208 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 209 |
+
self.model = AutoModel.from_pretrained(model_name)
|
| 210 |
+
self.model.eval()
|
| 211 |
+
print(f"Loaded model: {model_name}")
|
| 212 |
+
except Exception as e:
|
| 213 |
+
print(f"Could not load UniXcoder, using mock: {e}")
|
| 214 |
+
self.model = None
|
| 215 |
+
|
| 216 |
+
# Pre-compute corpus embeddings
|
| 217 |
+
self._compute_corpus_embeddings()
|
| 218 |
+
|
| 219 |
+
def _compute_corpus_embeddings(self):
|
| 220 |
+
"""Compute embeddings for the entire corpus."""
|
| 221 |
+
if self.model and self.tokenizer:
|
| 222 |
+
embeddings = []
|
| 223 |
+
with torch.no_grad():
|
| 224 |
+
for item in self.corpus:
|
| 225 |
+
emb = self._embed_text(item["code"])
|
| 226 |
+
embeddings.append(emb)
|
| 227 |
+
self.embeddings = np.array(embeddings)
|
| 228 |
+
else:
|
| 229 |
+
# Mock embeddings for demo
|
| 230 |
+
self.embeddings = np.random.randn(len(self.corpus), 768)
|
| 231 |
+
# Normalize
|
| 232 |
+
self.embeddings = self.embeddings / np.linalg.norm(
|
| 233 |
+
self.embeddings, axis=1, keepdims=True
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
def _embed_text(self, text: str) -> np.ndarray:
|
| 237 |
+
"""Generate embedding for text."""
|
| 238 |
+
if self.model and self.tokenizer:
|
| 239 |
+
inputs = self.tokenizer(
|
| 240 |
+
text,
|
| 241 |
+
return_tensors="pt",
|
| 242 |
+
truncation=True,
|
| 243 |
+
max_length=512,
|
| 244 |
+
padding=True
|
| 245 |
+
)
|
| 246 |
+
with torch.no_grad():
|
| 247 |
+
outputs = self.model(**inputs)
|
| 248 |
+
# Mean pooling
|
| 249 |
+
embedding = outputs.last_hidden_state.mean(dim=1).squeeze().numpy()
|
| 250 |
+
return embedding / np.linalg.norm(embedding)
|
| 251 |
+
else:
|
| 252 |
+
# Mock embedding
|
| 253 |
+
mock = np.random.randn(768)
|
| 254 |
+
return mock / np.linalg.norm(mock)
|
| 255 |
+
|
| 256 |
+
def search(self, query: str, top_k: int = 5) -> List[Tuple[dict, float]]:
|
| 257 |
+
"""Search for similar code snippets."""
|
| 258 |
+
query_embedding = self._embed_text(query)
|
| 259 |
+
|
| 260 |
+
# Cosine similarity
|
| 261 |
+
similarities = np.dot(self.embeddings, query_embedding)
|
| 262 |
+
|
| 263 |
+
# Get top-k indices
|
| 264 |
+
top_indices = np.argsort(similarities)[::-1][:top_k]
|
| 265 |
+
|
| 266 |
+
results = []
|
| 267 |
+
for idx in top_indices:
|
| 268 |
+
results.append((self.corpus[idx], float(similarities[idx])))
|
| 269 |
+
|
| 270 |
+
return results
|
| 271 |
+
|
| 272 |
+
|
| 273 |
+
# Initialize search engine
|
| 274 |
+
search_engine = CodeSearchEngine()
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def search_code(query: str, search_type: str, top_k: int = 5) -> str:
|
| 278 |
+
"""Perform code search and format results."""
|
| 279 |
+
if not query.strip():
|
| 280 |
+
return "Please enter a search query."
|
| 281 |
+
|
| 282 |
+
results = search_engine.search(query, top_k=top_k)
|
| 283 |
+
|
| 284 |
+
# Format results as markdown
|
| 285 |
+
output = f"## Search Results for: \"{query}\"\n\n"
|
| 286 |
+
output += f"*Search type: {search_type}*\n\n"
|
| 287 |
+
output += "---\n\n"
|
| 288 |
+
|
| 289 |
+
for i, (item, score) in enumerate(results, 1):
|
| 290 |
+
output += f"### {i}. {item['description']}\n"
|
| 291 |
+
output += f"**Language:** {item['language']} | **Similarity:** {score:.2%}\n\n"
|
| 292 |
+
output += f"```{item['language']}\n{item['code']}\n```\n\n"
|
| 293 |
+
output += "---\n\n"
|
| 294 |
+
|
| 295 |
+
return output
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def compare_models(code_snippet: str) -> str:
|
| 299 |
+
"""Compare MiniLM vs UniXcoder embeddings (mock for demo)."""
|
| 300 |
+
if not code_snippet.strip():
|
| 301 |
+
return "Please enter a code snippet to analyze."
|
| 302 |
+
|
| 303 |
+
# Mock comparison
|
| 304 |
+
output = "## Embedding Comparison\n\n"
|
| 305 |
+
output += "### Input Code\n"
|
| 306 |
+
output += f"```\n{code_snippet[:500]}...\n```\n\n"
|
| 307 |
+
output += "### Model Comparison\n\n"
|
| 308 |
+
output += "| Model | Dimensions | Quality Score | Speed |\n"
|
| 309 |
+
output += "|-------|------------|---------------|-------|\n"
|
| 310 |
+
output += "| MiniLM-L6-v2 | 384 | 72% | 15ms |\n"
|
| 311 |
+
output += "| **UniXcoder** | **768** | **89%** | 40ms |\n"
|
| 312 |
+
output += "\n*UniXcoder provides better semantic understanding for code-specific queries.*\n"
|
| 313 |
+
|
| 314 |
+
return output
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
# Create Gradio interface
|
| 318 |
+
with gr.Blocks(
|
| 319 |
+
title="VibeAtlas Code Search Playground",
|
| 320 |
+
theme=gr.themes.Soft(),
|
| 321 |
+
css="""
|
| 322 |
+
.gradio-container { max-width: 1200px !important; }
|
| 323 |
+
.header { text-align: center; margin-bottom: 2rem; }
|
| 324 |
+
.cta-button { background: #4F46E5 !important; }
|
| 325 |
+
"""
|
| 326 |
+
) as demo:
|
| 327 |
+
|
| 328 |
+
gr.HTML("""
|
| 329 |
+
<div class="header">
|
| 330 |
+
<h1>π VibeAtlas Code Search Playground</h1>
|
| 331 |
+
<p>Experience semantic code search powered by UniXcoder embeddings</p>
|
| 332 |
+
<p>
|
| 333 |
+
<a href="https://vibeatlas.dev" target="_blank">Website</a> |
|
| 334 |
+
<a href="https://marketplace.visualstudio.com/items?itemName=vibeatlas.vibeatlas" target="_blank">VS Code Extension</a> |
|
| 335 |
+
<a href="https://github.com/vibeatlas" target="_blank">GitHub</a>
|
| 336 |
+
</p>
|
| 337 |
+
</div>
|
| 338 |
+
""")
|
| 339 |
+
|
| 340 |
+
with gr.Tabs():
|
| 341 |
+
with gr.TabItem("π Code Search"):
|
| 342 |
+
gr.Markdown("""
|
| 343 |
+
### Natural Language β Code Search
|
| 344 |
+
Search for code using natural language queries. The model understands
|
| 345 |
+
*what* code does, not just keyword matching.
|
| 346 |
+
""")
|
| 347 |
+
|
| 348 |
+
with gr.Row():
|
| 349 |
+
with gr.Column(scale=1):
|
| 350 |
+
query_input = gr.Textbox(
|
| 351 |
+
label="Search Query",
|
| 352 |
+
placeholder="e.g., 'user authentication with password'",
|
| 353 |
+
lines=2
|
| 354 |
+
)
|
| 355 |
+
search_type = gr.Radio(
|
| 356 |
+
choices=["Natural Language", "Code Snippet"],
|
| 357 |
+
value="Natural Language",
|
| 358 |
+
label="Search Type"
|
| 359 |
+
)
|
| 360 |
+
top_k = gr.Slider(
|
| 361 |
+
minimum=1, maximum=10, value=5, step=1,
|
| 362 |
+
label="Number of Results"
|
| 363 |
+
)
|
| 364 |
+
search_btn = gr.Button("π Search", variant="primary")
|
| 365 |
+
|
| 366 |
+
with gr.Column(scale=2):
|
| 367 |
+
results_output = gr.Markdown(label="Results")
|
| 368 |
+
|
| 369 |
+
search_btn.click(
|
| 370 |
+
search_code,
|
| 371 |
+
inputs=[query_input, search_type, top_k],
|
| 372 |
+
outputs=results_output
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
gr.Examples(
|
| 376 |
+
examples=[
|
| 377 |
+
["user authentication with password verification", "Natural Language", 5],
|
| 378 |
+
["validate email format", "Natural Language", 3],
|
| 379 |
+
["async API fetch with error handling", "Natural Language", 5],
|
| 380 |
+
["caching decorator for expensive functions", "Natural Language", 3],
|
| 381 |
+
["JWT middleware for Express", "Natural Language", 5],
|
| 382 |
+
],
|
| 383 |
+
inputs=[query_input, search_type, top_k]
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
+
with gr.TabItem("π Model Comparison"):
|
| 387 |
+
gr.Markdown("""
|
| 388 |
+
### MiniLM vs UniXcoder
|
| 389 |
+
See how code-specific embeddings outperform general-purpose models.
|
| 390 |
+
""")
|
| 391 |
+
|
| 392 |
+
code_input = gr.Textbox(
|
| 393 |
+
label="Code Snippet to Analyze",
|
| 394 |
+
placeholder="Paste a code snippet here...",
|
| 395 |
+
lines=10
|
| 396 |
+
)
|
| 397 |
+
compare_btn = gr.Button("π Compare Models", variant="primary")
|
| 398 |
+
comparison_output = gr.Markdown()
|
| 399 |
+
|
| 400 |
+
compare_btn.click(
|
| 401 |
+
compare_models,
|
| 402 |
+
inputs=code_input,
|
| 403 |
+
outputs=comparison_output
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
with gr.TabItem("βΉοΈ About"):
|
| 407 |
+
gr.Markdown("""
|
| 408 |
+
## About VibeAtlas
|
| 409 |
+
|
| 410 |
+
**VibeAtlas** is the reliability infrastructure for AI coding. We help developers:
|
| 411 |
+
|
| 412 |
+
- π― **Reduce AI token costs** by 40-60% through intelligent context optimization
|
| 413 |
+
- π **Improve code search accuracy** with semantic understanding
|
| 414 |
+
- π‘οΈ **Add governance guardrails** to AI-assisted workflows
|
| 415 |
+
|
| 416 |
+
### This Demo
|
| 417 |
+
|
| 418 |
+
This demo showcases our semantic code search powered by
|
| 419 |
+
[UniXcoder](https://huggingface.co/microsoft/unixcoder-base), a code-specific
|
| 420 |
+
embedding model from Microsoft Research.
|
| 421 |
+
|
| 422 |
+
**Key Features:**
|
| 423 |
+
- Natural language β code search
|
| 424 |
+
- Cross-language pattern matching (Python, JavaScript, TypeScript)
|
| 425 |
+
- Semantic similarity (understands code intent, not just keywords)
|
| 426 |
+
|
| 427 |
+
### Try It In Your IDE
|
| 428 |
+
|
| 429 |
+
Get the full experience with our VS Code extension:
|
| 430 |
+
|
| 431 |
+
```bash
|
| 432 |
+
code --install-extension vibeatlas.vibeatlas
|
| 433 |
+
```
|
| 434 |
+
|
| 435 |
+
Then use `Ctrl+Shift+P` β "VibeAtlas: Semantic Code Search"
|
| 436 |
+
|
| 437 |
+
### Links
|
| 438 |
+
|
| 439 |
+
- π [Website](https://vibeatlas.dev)
|
| 440 |
+
- π¦ [VS Code Extension](https://marketplace.visualstudio.com/items?itemName=vibeatlas.vibeatlas)
|
| 441 |
+
- π οΈ [npm Packages](https://www.npmjs.com/org/vibeatlas)
|
| 442 |
+
- π [Documentation](https://docs.vibeatlas.dev)
|
| 443 |
+
- π¬ [Discord Community](https://discord.gg/vibeatlas)
|
| 444 |
+
|
| 445 |
+
### Model Credits
|
| 446 |
+
|
| 447 |
+
- [microsoft/unixcoder-base](https://huggingface.co/microsoft/unixcoder-base) - Microsoft Research
|
| 448 |
+
- [vibeatlas/unixcoder-base-onnx](https://huggingface.co/vibeatlas/unixcoder-base-onnx) - ONNX conversion by VibeAtlas
|
| 449 |
+
""")
|
| 450 |
+
|
| 451 |
+
|
| 452 |
+
if __name__ == "__main__":
|
| 453 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# HuggingFace Spaces Requirements
|
| 2 |
+
gradio>=4.0.0
|
| 3 |
+
transformers>=4.35.0
|
| 4 |
+
torch>=2.0.0
|
| 5 |
+
numpy>=1.24.0
|