|
import gradio as gr |
|
import hand_schedule |
|
import adaptive_schedule |
|
import interleaved_variant |
|
import type2 |
|
import schedule1f1bv |
|
from PIL import Image |
|
from svg_event import render_manual_graph |
|
import pathlib |
|
|
|
def percentage(x): |
|
return f"{x*100:.2f}%" |
|
|
|
def get_schedule_time(result): |
|
result = [ |
|
list(filter(lambda x: x.type in {'F', 'B', 'W'}, r)) for r in result |
|
] |
|
time = max( |
|
[ |
|
max([x.completion_time for x in stage]) - min([x.start_time for x in stage]) for stage in result |
|
] |
|
) |
|
return time |
|
|
|
|
|
def get_memory_usage(result): |
|
max_mem = 0 |
|
has_w = False |
|
for r in result: |
|
for x in r: |
|
if x.type in ('W', 'w'): |
|
has_w = True |
|
for r in result: |
|
cur = 0 |
|
for x in r: |
|
if x.type in ('F', 'f'): |
|
cur += 1 |
|
if x.type in ('W', 'w'): |
|
cur -= 1 |
|
if has_w == False and x.type in ('B', 'b'): |
|
cur -= 1 |
|
max_mem = max(max_mem, cur) |
|
return max_mem |
|
|
|
img_queue = [] |
|
def get_schedule_image(result, max_time): |
|
result = [ |
|
list(filter(lambda x: x.type in {'F', 'B', 'W'}, r)) for r in result |
|
] |
|
svg = render_manual_graph(result, max_time, len(result[0]) <= 72) |
|
img_queue.append(svg) |
|
if len(img_queue) > 32: |
|
poped = img_queue.pop(0) |
|
pathlib.Path(poped).unlink() |
|
|
|
return pathlib.Path(svg) |
|
|
|
|
|
|
|
def calculate(p, m, f, b, w, c, mem): |
|
baseline_result = hand_schedule.get_hand_schedule(p, m, f, b + w, 0, c) |
|
baseline_result = [ |
|
list(filter(lambda x: x.type in {'F', 'B'}, r)) for r in baseline_result |
|
] |
|
baseline_time = get_schedule_time(baseline_result) |
|
baseline_bubble=percentage(baseline_time/(f+b+w)/m - 1) |
|
baseline_mem = get_memory_usage(baseline_result) |
|
baseline_acceleration=percentage(0) |
|
|
|
adapt_result = adaptive_schedule.schedule( |
|
p, |
|
m, |
|
[f/2, b/2, w/2, c], |
|
max_mem=mem * 2 |
|
) |
|
|
|
adapt_time = get_schedule_time(adapt_result) |
|
adapt_mem = get_memory_usage(adapt_result) / 2 |
|
adapt_bubble=percentage(adapt_time/(f+b+w)/m - 1) |
|
adapt_acceleration=percentage(baseline_time/adapt_time - 1) if baseline_time is not None else None |
|
|
|
schedule1f1bv_result = schedule1f1bv.schedule( |
|
p, |
|
m, |
|
[f / 2, b / 2, w / 2, c] |
|
) |
|
|
|
schedule1f1bv_time = get_schedule_time(schedule1f1bv_result) |
|
schedule1f1bv_mem = get_memory_usage(schedule1f1bv_result) / 2 |
|
schedule1f1bv_bubble=percentage(schedule1f1bv_time/(f+b+w)/m - 1) |
|
schedule1f1bv_acceleration=percentage(baseline_time/schedule1f1bv_time - 1) if baseline_time is not None else None |
|
|
|
type2_result = type2.schedule( |
|
p, |
|
m, |
|
[f, b, w, c] |
|
) |
|
|
|
type2_time = get_schedule_time(type2_result) |
|
type2_mem = get_memory_usage(type2_result) |
|
type2_bubble=percentage(type2_time/(f+b+w)/m - 1) |
|
type2_acceleration=percentage(baseline_time/type2_time - 1) if baseline_time is not None else None |
|
|
|
interleaved_result = interleaved_variant.get_interleaved_variation( |
|
p, |
|
m, |
|
[f/2, b/2, w/2, c] |
|
) |
|
|
|
interleaved_time = get_schedule_time(interleaved_result) |
|
interleaved_mem = get_memory_usage(interleaved_result) / 2 |
|
interleaved_bubble=percentage(interleaved_time/(f+b+w)/m - 1) |
|
interleaved_acceleration=percentage(baseline_time/interleaved_time - 1) if baseline_time is not None else None |
|
|
|
|
|
max_time = max(filter(lambda x: x is not None, [baseline_time, adapt_time, interleaved_time, type2_time, schedule1f1bv_time])) |
|
print(max_time) |
|
if baseline_result is not None: |
|
baseline_image = get_schedule_image(baseline_result, max_time) |
|
if adapt_result is not None: |
|
adapt_image = get_schedule_image(adapt_result, max_time) |
|
if interleaved_result is not None: |
|
interleaved_image = get_schedule_image(interleaved_result, max_time) |
|
if type2_result is not None: |
|
type2_image = get_schedule_image(type2_result, max_time) |
|
if schedule1f1bv_result is not None: |
|
schedule1f1bv_image = get_schedule_image(schedule1f1bv_result, max_time) |
|
|
|
return [baseline_acceleration, baseline_mem, baseline_bubble, baseline_image, |
|
adapt_acceleration, adapt_mem, adapt_bubble, adapt_image, |
|
schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image, |
|
type2_acceleration, type2_mem, type2_bubble, type2_image, |
|
interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(open("description1.md").read()) |
|
gr.Markdown("# Pipeline Scheduler Playground") |
|
presets = { |
|
'Default Case': (4, 10, 100, 110, 90, 5, 'V-Half (1/2)'), |
|
'Ideal Case': (4, 10, 20, 20, 20, 0, 'V-Min (1/3)'), |
|
'Real Case': (4, 10, 1049, 1122, 903, 79, 'V-Half (1/2)'), |
|
'Zero Bubble Case': (4, 10, 1049, 1122, 903, 79, 'V-ZB (1)') |
|
} |
|
preset_buttons = {} |
|
|
|
with gr.Group(): |
|
gr.Markdown("Preset Setups") |
|
with gr.Row(): |
|
for (k, v) in presets.items(): |
|
preset_buttons[k] = gr.Button(k, variant="secondary") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
gr.Markdown("Basic Parameters") |
|
with gr.Row(): |
|
p=gr.Number(label="Number of stages (p)", value=4, interactive=True, precision=0) |
|
m=gr.Number(label="Number of microbatches (m)", value=10, interactive=True, precision=0) |
|
with gr.Column(scale=2): |
|
with gr.Group(): |
|
gr.Markdown("Costs. All costs are used as integers. For chunked schedules, this is the time of two virtual stages on a stage combined.") |
|
with gr.Row(): |
|
f=gr.Number(label="Time of F", value=100, interactive=True, precision=0) |
|
b=gr.Number(label="Time of B", value=110, interactive=True, precision=0) |
|
w=gr.Number(label="Time of W", value=90, interactive=True, precision=0) |
|
c=gr.Number(label="Time of one P2P communication", value=5, interactive=True, precision=0) |
|
with gr.Group(): |
|
gr.Markdown("Activation memory limit.") |
|
def update_mem(p, s, mem): |
|
print("update") |
|
if s == "custom": |
|
return mem |
|
if s == "V-Min (1/3)": |
|
return (p + 4) // 3 |
|
if s == "V-Half (1/2)": |
|
return (p + 2) // 2 |
|
if s == "V-ZB (1)": |
|
return p |
|
assert False |
|
memsel=gr.Radio(choices=["V-Min (1/3)", "V-Half (1/2)", "V-ZB (1)", "custom"], value="V-Half (1/2)") |
|
mem=gr.Number(label="Custom memory limit in terms of pending F on a stage. For chunked schedules, this is relative to two virtual stages on a stage combined.", value=(p.value + 2) // 2, interactive=True, precision=0) |
|
memsel.change(update_mem, inputs=[p, memsel, mem], outputs=mem) |
|
p.change(update_mem, inputs=[p, memsel, mem], outputs=mem) |
|
|
|
button=gr.Button("Calculate", variant="primary") |
|
|
|
with gr.Group(): |
|
gr.Markdown("1F1B") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
baseline_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B") |
|
baseline_mem=gr.Textbox("", label="Maximum memory usage") |
|
baseline_bubble=gr.Textbox("", label="Bubble Rate") |
|
with gr.Column(scale=4): |
|
baseline_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False) |
|
with gr.Group(): |
|
gr.Markdown("Adaptive Scheduler") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
adapt_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B") |
|
adapt_mem=gr.Textbox("", label="Maximum memory usage") |
|
adapt_bubble=gr.Textbox("", label="Bubble Rate") |
|
with gr.Column(scale=4): |
|
adapt_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False) |
|
gr.Markdown(open("description2.md").read()) |
|
with gr.Group(): |
|
gr.Markdown("1F1B-V Schedule") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
schedule1f1bv_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B") |
|
schedule1f1bv_mem=gr.Textbox("", label="Maximum memory usage") |
|
schedule1f1bv_bubble=gr.Textbox("", label="Bubble Rate") |
|
with gr.Column(scale=4): |
|
schedule1f1bv_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False) |
|
with gr.Group(): |
|
gr.Markdown("Zero bubble schedule with 2/3 1F1B memory") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
type2_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B") |
|
type2_mem=gr.Textbox("", label="Maximum memory usage") |
|
type2_bubble=gr.Textbox("", label="Bubble Rate. Calculated as (1 - longest stage time/(F+B+W)/m).") |
|
with gr.Column(scale=4): |
|
type2_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False) |
|
with gr.Group(): |
|
gr.Markdown("Variation of Interleaved 1F1B Schedule") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
interleaved_acceleration=gr.Textbox("", label="Acceleration compared to 1F1B") |
|
interleaved_mem=gr.Textbox("", label="Maximum memory usage") |
|
interleaved_bubble=gr.Textbox("", label="Bubble Rate. Calculated as (1 - longest stage time/(F+B+W)/m).") |
|
with gr.Column(scale=4): |
|
interleaved_image=gr.Image(None, interactive=False, label="Schedule Image", show_label=False) |
|
button.click(calculate, inputs=[p, m, f, b, w, c, mem], outputs=[baseline_acceleration, baseline_mem, baseline_bubble, baseline_image, |
|
adapt_acceleration, adapt_mem, adapt_bubble, adapt_image, |
|
schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image, |
|
type2_acceleration, type2_mem, type2_bubble, type2_image, |
|
interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image]) |
|
gr.Markdown(open("description3.md").read()) |
|
|
|
for (k, v) in presets.items(): |
|
def update_preset(pb, p, m, f, b, w, c, mem): |
|
print(pb) |
|
print(presets[pb]) |
|
print(presets[pb][-1]) |
|
return *presets[pb],*calculate(*presets[pb][:-1], update_mem(p, presets[pb][-1], -1)) |
|
preset_buttons[k].click( |
|
update_preset, |
|
inputs=[preset_buttons[k], p, m, f, b, w, c, mem], |
|
outputs=[p, m, f, b, w, c, memsel, |
|
baseline_acceleration, baseline_mem, baseline_bubble, baseline_image, |
|
adapt_acceleration, adapt_mem, adapt_bubble, adapt_image, |
|
schedule1f1bv_acceleration, schedule1f1bv_mem, schedule1f1bv_bubble, schedule1f1bv_image, |
|
type2_acceleration, type2_mem, type2_bubble, type2_image, |
|
interleaved_acceleration, interleaved_mem, interleaved_bubble, interleaved_image]) |
|
demo.launch() |
|
|