saikanov's picture
Update app.py
2510e9d verified
raw
history blame
7.73 kB
import gradio as gr
import pandas as pd
from langchain.memory import VectorStoreRetrieverMemory
from langchain_community.vectorstores import Chroma
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.prompts import PromptTemplate
import chromadb
import os
from uuid import uuid4
from langchain_google_genai import ChatGoogleGenerativeAI
# Initialize persistent client
CHROMA_PATH = "./vectordb-chroma/gformdb"
os.makedirs(CHROMA_PATH, exist_ok=True)
def process_files(csv_file, gemini_key, user_aspek, pdf_file, model):
try:
context = ""
def context_search(query="a",source_name=False, k=5):
if source_name==True:
results = vectorstore.similarity_search(
query=query,
k=k,
filter={"source": source_name}
)
else:
results = vectorstore.similarity_search(
query=query,
k=k,
)
for res in results:
page_content = res.page_content
metadata = res.metadata
return page_content, metadata
def format_qa_efficient(data_path):
data = pd.read_csv(data_path)
data.head()
qa_efficient = ""
indexs = 0
Question = ""
for column in data.columns[3:]: # Lewati kolom Timestamp, Email Address, dan Nama
qa_efficient += f"Nomor-{indexs+1}.{column}:\n"
indexs += 1
Question += column
for index, row in data.iterrows():
name = row['Nama']
email = row["Email_Address"]
answer = row[column]
qa_efficient += f"- {name}|{email}: {answer}\n"
qa_efficient += "\n" # Baris kosong antara setiap pertanyaan
return qa_efficient, Question
# Set OpenAI API
if gemini_key == "":
gemini_key = os.getenv('GEMINI_API_KEY')
# Process CSV (Gradio provides the file path directly)
QA, Question = format_qa_efficient(csv_file)
if pdf_file:
# Initialize Chroma client
persistent_client = chromadb.PersistentClient(path=CHROMA_PATH)
collection = persistent_client.get_or_create_collection("RAG")
vectorstore = Chroma(
client=persistent_client,
collection_name=collection.name,
embedding_function=OpenAIEmbeddings()
)
res, metadata = context_search(pdf_file,k=1)
if metadata == pdf_file.name:
# Process PDF (Gradio provides the file path directly)
pages = PyPDFLoader(pdf_file.name).load_and_split()
uuids = [str(uuid4()) for _ in range(len(pages))]
vectorstore.add_documents(documents=pages, ids=uuids)
context, metadata = context_search(Question, pdf_file.name)
elif pdf_file == False:
context = "Tidak ada context tambahan yang diberikan, tolong gunakan pengetahuan anda untuk menjawab pertanyaan"
# Evaluation template
TEMPLATE = """
Kamu adalah AI evaluator pendidikan. Nilai jawaban siswa berikut menggunakan panduan ini:
Buat output dengan format(format ini untuk satu murid, jadi selesaikan dulu 1 murid untuk semua nomor, baru ke murid berikutnya):
HASIL EVALUASI
=============
Nama dan Email Murid:
[Nomor Soal].
Nilai: [Sesuaikan dengan Aspek Penilaian yang diberikan user]
Alasan: [alasan singkat penilaian]
Saran Perbaikan: [saran]
[buat seperti di atas untuk setiap jawaban]
================
Rata-rata Nilai: [nilai]
Rekomendasi Umum:
[rekomendasi]
MATERI REFERENSI:
{context}
SOAL & JAWABAN:
{QA}
Aspek Penilaian yang diberikan user:
{Aspek}
"""
PROMPT = PromptTemplate(
input_variables=["QA", "context", "Aspek"],
template=TEMPLATE
)
# Initialize ChatGPT
chat = ChatGoogleGenerativeAI(model=model, api_key=gemini_key)
chain = PROMPT | chat
# Generate evaluation
Aspek_penilaian = user_aspek
response = chain.invoke({
"Aspek": Aspek_penilaian,
"QA": QA,
"context": context
})
return response.content
except Exception as e:
return f"Error occurred: {str(e)}\nType: {type(e)}"
def load_demo_files(checked):
if checked:
return gr.update(value="./demo.csv"), gr.update(value="./demo.pdf")
else:
return gr.update(value=None), gr.update(value=None)
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Quiz Evaluator", theme=gr.themes.Soft()) as app:
with gr.Column(scale=1):
gr.Markdown(
"""
# πŸ“ Quiz Response Evaluator
Upload your quiz responses (CSV) and reference material (PDF) to get AI-powered evaluation.
"""
)
with gr.Row():
with gr.Column(scale=1):
csv_input = gr.File(
label="Quiz Responses (CSV)",
file_types=[".csv"]
)
with gr.Column(scale=1):
pdf_input = gr.File(
label="Reference Material (PDF)",
file_types=[".pdf"]
)
demo_checkbox = gr.Checkbox(
label="Use Demo Files",
value=False
)
demo_checkbox.change(
fn=load_demo_files,
inputs=[demo_checkbox],
outputs=[csv_input, pdf_input]
)
user_aspek = gr.Textbox(
label="Aspek",
placeholder="isi dengan bagaimana cara AI akan menilai jawaban",
show_copy_button=True,
value = "Jika Jawaban salah berikan nilai 0, jika jawaban benar namun tidak tepat berikan nilai 50, jika jawaban benar dan lengkap serta penjelasan baik, beri nilai 100"
)
model_name = gr.Textbox(
label="Gemini Model",
placeholder="input your Gemini model",
value="gemini-1.5-pro"
)
api_key = gr.Textbox(
label="Gemini API Key",
placeholder="Enter your Gemini API key, default is my API key, use it wisely XD",
type="password"
)
submit_btn = gr.Button(
"Evaluate Responses",
variant="primary",
size="lg"
)
# Using Textbox instead of Markdown for better formatting
output = gr.Textbox(
label="Evaluation Results",
lines=20,
max_lines=30,
show_copy_button=True
)
submit_btn.click(
fn=process_files,
inputs=[csv_input,api_key,user_aspek,pdf_input,model_name],
outputs=output
)
return app
# Launch the interface
if __name__ == "__main__":
app = create_interface()
app.launch(share=True)