Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from langchain.memory import VectorStoreRetrieverMemory | |
from langchain_community.vectorstores import Chroma | |
from langchain_openai import OpenAIEmbeddings, ChatOpenAI | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_core.prompts import PromptTemplate | |
import chromadb | |
import os | |
from uuid import uuid4 | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
# Initialize persistent client | |
CHROMA_PATH = "./vectordb-chroma/gformdb" | |
os.makedirs(CHROMA_PATH, exist_ok=True) | |
def process_files(csv_file, gemini_key, user_aspek, pdf_file, model): | |
try: | |
context = "" | |
def context_search(query="a",source_name=False, k=5): | |
if source_name==True: | |
results = vectorstore.similarity_search( | |
query=query, | |
k=k, | |
filter={"source": source_name} | |
) | |
else: | |
results = vectorstore.similarity_search( | |
query=query, | |
k=k, | |
) | |
for res in results: | |
page_content = res.page_content | |
metadata = res.metadata | |
return page_content, metadata | |
def format_qa_efficient(data_path): | |
data = pd.read_csv(data_path) | |
data.head() | |
qa_efficient = "" | |
indexs = 0 | |
Question = "" | |
for column in data.columns[3:]: # Lewati kolom Timestamp, Email Address, dan Nama | |
qa_efficient += f"Nomor-{indexs+1}.{column}:\n" | |
indexs += 1 | |
Question += column | |
for index, row in data.iterrows(): | |
name = row['Nama'] | |
email = row["Email_Address"] | |
answer = row[column] | |
qa_efficient += f"- {name}|{email}: {answer}\n" | |
qa_efficient += "\n" # Baris kosong antara setiap pertanyaan | |
return qa_efficient, Question | |
# Set OpenAI API | |
if gemini_key == "": | |
gemini_key = os.getenv('GEMINI_API_KEY') | |
# Process CSV (Gradio provides the file path directly) | |
QA, Question = format_qa_efficient(csv_file) | |
if pdf_file: | |
# Initialize Chroma client | |
persistent_client = chromadb.PersistentClient(path=CHROMA_PATH) | |
collection = persistent_client.get_or_create_collection("RAG") | |
vectorstore = Chroma( | |
client=persistent_client, | |
collection_name=collection.name, | |
embedding_function=OpenAIEmbeddings() | |
) | |
res, metadata = context_search(pdf_file,k=1) | |
if metadata == pdf_file.name: | |
# Process PDF (Gradio provides the file path directly) | |
pages = PyPDFLoader(pdf_file.name).load_and_split() | |
uuids = [str(uuid4()) for _ in range(len(pages))] | |
vectorstore.add_documents(documents=pages, ids=uuids) | |
context, metadata = context_search(Question, pdf_file.name) | |
elif pdf_file == False: | |
context = "Tidak ada context tambahan yang diberikan, tolong gunakan pengetahuan anda untuk menjawab pertanyaan" | |
# Evaluation template | |
TEMPLATE = """ | |
Kamu adalah AI evaluator pendidikan. Nilai jawaban siswa berikut menggunakan panduan ini: | |
Buat output dengan format(format ini untuk satu murid, jadi selesaikan dulu 1 murid untuk semua nomor, baru ke murid berikutnya): | |
HASIL EVALUASI | |
============= | |
Nama dan Email Murid: | |
[Nomor Soal]. | |
Nilai: [Sesuaikan dengan Aspek Penilaian yang diberikan user] | |
Alasan: [alasan singkat penilaian] | |
Saran Perbaikan: [saran] | |
[buat seperti di atas untuk setiap jawaban] | |
================ | |
Rata-rata Nilai: [nilai] | |
Rekomendasi Umum: | |
[rekomendasi] | |
MATERI REFERENSI: | |
{context} | |
SOAL & JAWABAN: | |
{QA} | |
Aspek Penilaian yang diberikan user: | |
{Aspek} | |
""" | |
PROMPT = PromptTemplate( | |
input_variables=["QA", "context", "Aspek"], | |
template=TEMPLATE | |
) | |
# Initialize ChatGPT | |
chat = ChatGoogleGenerativeAI(model=model, api_key=gemini_key) | |
chain = PROMPT | chat | |
# Generate evaluation | |
Aspek_penilaian = user_aspek | |
response = chain.invoke({ | |
"Aspek": Aspek_penilaian, | |
"QA": QA, | |
"context": context | |
}) | |
return response.content | |
except Exception as e: | |
return f"Error occurred: {str(e)}\nType: {type(e)}" | |
def load_demo_files(checked): | |
if checked: | |
return gr.update(value="./demo.csv"), gr.update(value="./demo.pdf") | |
else: | |
return gr.update(value=None), gr.update(value=None) | |
# Create Gradio interface | |
def create_interface(): | |
with gr.Blocks(title="Quiz Evaluator", theme=gr.themes.Soft()) as app: | |
with gr.Column(scale=1): | |
gr.Markdown( | |
""" | |
# π Quiz Response Evaluator | |
Upload your quiz responses (CSV) and reference material (PDF) to get AI-powered evaluation. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
csv_input = gr.File( | |
label="Quiz Responses (CSV)", | |
file_types=[".csv"] | |
) | |
with gr.Column(scale=1): | |
pdf_input = gr.File( | |
label="Reference Material (PDF)", | |
file_types=[".pdf"] | |
) | |
demo_checkbox = gr.Checkbox( | |
label="Use Demo Files", | |
value=False | |
) | |
demo_checkbox.change( | |
fn=load_demo_files, | |
inputs=[demo_checkbox], | |
outputs=[csv_input, pdf_input] | |
) | |
user_aspek = gr.Textbox( | |
label="Aspek", | |
placeholder="isi dengan bagaimana cara AI akan menilai jawaban", | |
show_copy_button=True, | |
value = "Jika Jawaban salah berikan nilai 0, jika jawaban benar namun tidak tepat berikan nilai 50, jika jawaban benar dan lengkap serta penjelasan baik, beri nilai 100" | |
) | |
model_name = gr.Textbox( | |
label="Gemini Model", | |
placeholder="input your Gemini model", | |
value="gemini-1.5-pro" | |
) | |
api_key = gr.Textbox( | |
label="Gemini API Key", | |
placeholder="Enter your Gemini API key, default is my API key, use it wisely XD", | |
type="password" | |
) | |
submit_btn = gr.Button( | |
"Evaluate Responses", | |
variant="primary", | |
size="lg" | |
) | |
# Using Textbox instead of Markdown for better formatting | |
output = gr.Textbox( | |
label="Evaluation Results", | |
lines=20, | |
max_lines=30, | |
show_copy_button=True | |
) | |
submit_btn.click( | |
fn=process_files, | |
inputs=[csv_input,api_key,user_aspek,pdf_input,model_name], | |
outputs=output | |
) | |
return app | |
# Launch the interface | |
if __name__ == "__main__": | |
app = create_interface() | |
app.launch(share=True) |