Diabetes / main.py
saifsunny's picture
Upload 3 files
7fa3b30
raw
history blame
10.6 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import GradientBoostingClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
st.title('Diabetes Prediction Application')
st.write('''
Please fill in the attributes below, then hit the Predict button
to get your results.
''')
st.header('Input Attributes')
age = st.slider('Your Age (Years)', min_value=0.0, max_value=100.0, value=50.0, step=1.0)
st.write(''' ''')
gen = st.radio("Your Gender", ('Male', 'Female'))
st.write(''' ''')
# gender conversion
if gen == "Male":
gender = 1
else:
gender = 0
urea = st.slider('Urea', min_value=0.0, max_value=100.0, value=50.0, step=0.1)
st.write(''' ''')
cr = st.slider('Creatinine Ratio(Cr)', min_value=0.0, max_value=1000.0, value=500.0, step=1.0)
st.write(''' ''')
hb = st.slider('HbA1c', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
chol = st.slider('Cholesterol (Chol)', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
tg = st.slider('Triglycerides(TG) Cholesterol', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
hdl = st.slider('HDL Cholesterol', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
ldl = st.slider('LDL Cholesterol', min_value=0.0, max_value=20.0, value=10.0, step=0.1)
st.write(''' ''')
vldl = st.slider('VLDL Cholesterol', min_value=0.0, max_value=50.0, value=25.0, step=0.1)
st.write(''' ''')
bmi = st.slider('BMI', min_value=0.0, max_value=50.0, value=25.0, step=0.1)
st.write(''' ''')
selected_models = st.multiselect("Choose Classifier Models", ('Random Forest', 'Naïve Bayes', 'Logistic Regression', 'K-Nearest Neighbors', 'Decision Tree', 'Gradient Boosting', 'LightGBM', 'XGBoost', 'Multilayer Perceptron', 'Artificial Neural Network', 'Support Vector Machine'))
st.write(''' ''')
# Initialize an empty list to store the selected models
models_to_run = []
# Check which models were selected and add them to the models_to_run list
if 'Random Forest' in selected_models:
models_to_run.append(RandomForestClassifier())
if 'Naïve Bayes' in selected_models:
models_to_run.append(GaussianNB())
if 'Logistic Regression' in selected_models:
models_to_run.append(LogisticRegression())
if 'K-Nearest Neighbors' in selected_models:
models_to_run.append(KNeighborsClassifier())
if 'Decision Tree' in selected_models:
models_to_run.append(DecisionTreeClassifier())
if 'Gradient Boosting' in selected_models:
models_to_run.append(GradientBoostingClassifier())
if 'Support Vector Machine' in selected_models:
models_to_run.append(SVC(probability=True))
if 'LightGBM' in selected_models:
models_to_run.append(LGBMClassifier())
if 'XGBoost' in selected_models:
models_to_run.append(XGBClassifier())
if 'Multilayer Perceptron' in selected_models:
models_to_run.append(MLPClassifier())
if 'Artificial Neural Network' in selected_models:
models_to_run.append(MLPClassifier(hidden_layer_sizes=(100,), max_iter=100))
user_input = np.array([age, gender, urea, cr, hb, chol, tg, hdl, vldl,
ldl, bmi]).reshape(1, -1)
# import dataset
def get_dataset():
data = pd.read_csv('Diabetes.csv')
# Transforming class into numerical format
data['CLASS'] = data['CLASS'].apply(lambda x: 0 if x == 'N' else 1)
# Transforming Gender into numerical format
data['Gender'] = data['Gender'].apply(lambda x: 1 if x == 'M' else 0)
# Calculate the correlation matrix
# corr_matrix = data.corr()
# Create a heatmap of the correlation matrix
# plt.figure(figsize=(10, 8))
# sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
# plt.title('Correlation Matrix')
# plt.xticks(rotation=45)
# plt.yticks(rotation=0)
# plt.tight_layout()
# Display the heatmap in Streamlit
# st.pyplot()
return data
def generate_model_labels(model_names):
model_labels = []
for name in model_names:
words = name.split()
if len(words) > 1:
# Multiple words, use initials
label = "".join(word[0] for word in words)
else:
# Single word, take the first 3 letters
label = name[:3]
model_labels.append(label)
return model_labels
if st.button('Submit'):
df = get_dataset()
# fix column names
df.columns = (["id", "pation_no", "gender", "age", "urea", "cr",
"hb", "chol", "tg", "hdl", "ldl",
"vldl", "bmi", "target"])
# Split the dataset into train and test
X = df.drop(['target','id','pation_no'], axis=1)
y = df['target']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create two columns to divide the screen
left_column, right_column = st.columns(2)
# Left column content
with left_column:
# Create a VotingClassifier with the top 3 models
ensemble = VotingClassifier(
estimators=[('rf', RandomForestClassifier()), ('xgb', XGBClassifier()), ('gb', LGBMClassifier())],
voting='soft')
# Fit the voting classifier to the training data
ensemble.fit(X_train, y_train)
# Make predictions on the test set
model_predictions = ensemble.predict(user_input)
model_prob = ensemble.predict_proba(user_input)[:, 1]
# Evaluate the model's performance on the test set
ensamble_accuracy = accuracy_score(y_test, ensemble.predict(X_test))
ensamble_precision = precision_score(y_test, ensemble.predict(X_test))
ensamble_recall = recall_score(y_test, ensemble.predict(X_test))
ensamble_f1score = f1_score(y_test, ensemble.predict(X_test))
if model_predictions == 1:
st.write(f'According to Ensemble Model You have a **Very High Chance (1)** of Diabetes.')
st.write(f'Diabetes Probability: ', (model_prob* 100))
else:
st.write(f'According to Ensemble Model You have a **Very Low Chance (0)** of Diabetes.')
st.write(f'Diabetes Probability: ', (model_prob* 100))
st.write('Ensemble Model Accuracy:', ensamble_accuracy)
st.write('Ensemble Model Precision:', ensamble_precision)
st.write('Ensemble Model Recall:', ensamble_recall)
st.write('Ensemble Model F1 Score:', ensamble_f1score)
st.write('------------------------------------------------------------------------------------------------------')
# Right column content
with right_column:
for model in models_to_run:
# Train the selected model
model.fit(X_train, y_train)
# Make predictions on the test set
model_predictions = model.predict(user_input)
model_prob = model.predict_proba(user_input)[:, 1]
# Evaluate the model's performance on the test set
model_accuracy = accuracy_score(y_test, model.predict(X_test))
model_precision = precision_score(y_test, model.predict(X_test))
model_recall = recall_score(y_test, model.predict(X_test))
model_f1score = f1_score(y_test, model.predict(X_test))
if model_predictions == 1:
st.write(f'According to {type(model).__name__} Model You have a **Very High Chance (1)** of Diabetes.')
st.write(f'Diabetes Probability: ', (model_prob* 100))
else:
st.write(f'According to {type(model).__name__} Model You have a **Very Low Chance (0)** of Diabetes.')
st.write(f'Diabetes Probability: ', (model_prob* 100))
st.write(f'{type(model).__name__} Accuracy:', model_accuracy)
st.write(f'{type(model).__name__} Precision:', model_precision)
st.write(f'{type(model).__name__} Recall:', model_recall)
st.write(f'{type(model).__name__} F1 Score:', model_f1score)
st.write('------------------------------------------------------------------------------------------------------')
# Initialize lists to store model names and their respective performance metrics
model_names = ['Ensemble']
accuracies = [ensamble_accuracy]
precisions = [ensamble_precision]
recalls = [ensamble_recall]
f1_scores = [ensamble_f1score]
# Loop through the selected models to compute their performance metrics
for model in models_to_run:
model_names.append(type(model).__name__)
model.fit(X_train, y_train)
model_predictions = model.predict(X_test)
accuracies.append(accuracy_score(y_test, model_predictions))
precisions.append(precision_score(y_test, model_predictions))
recalls.append(recall_score(y_test, model_predictions))
f1_scores.append(f1_score(y_test, model_predictions))
# Create a DataFrame to store the performance metrics
metrics_df = pd.DataFrame({
'Model': model_names,
'Accuracy': accuracies,
'Precision': precisions,
'Recall': recalls,
'F1 Score': f1_scores
})
# Get the model labels
model_labels = generate_model_labels(metrics_df['Model'])
# Plot the comparison graphs
plt.figure(figsize=(12, 10))
# Accuracy comparison
plt.subplot(2, 2, 1)
plt.bar(model_labels, metrics_df['Accuracy'], color='skyblue')
plt.title('Accuracy Comparison')
plt.ylim(0, 1)
# Precision comparison
plt.subplot(2, 2, 2)
plt.bar(model_labels, metrics_df['Precision'], color='orange')
plt.title('Precision Comparison')
plt.ylim(0, 1)
# Recall comparison
plt.subplot(2, 2, 3)
plt.bar(model_labels, metrics_df['Recall'], color='green')
plt.title('Recall Comparison')
plt.ylim(0, 1)
# F1 Score comparison
plt.subplot(2, 2, 4)
plt.bar(model_labels, metrics_df['F1 Score'], color='purple')
plt.title('F1 Score Comparison')
plt.ylim(0, 1)
# Adjust layout to prevent overlapping of titles
plt.tight_layout()
# Display the graphs in Streamlit
st.pyplot()