saideep-arikontham
commited on
Commit
•
b48f1b7
1
Parent(s):
3564b10
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
from peft import PeftModel, PeftConfig
|
5 |
+
|
6 |
+
base_model = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
7 |
+
adapter_model = 'saideep-arikontham/twitter-roberta-base-sentiment-latest-biden-stance'
|
8 |
+
|
9 |
+
# define label maps
|
10 |
+
id2label = {0: "Anti-Biden", 1 : "Pro-Biden"}
|
11 |
+
label2id = {"Anti-Biden" : 0, "Pro-Biden" : 1}
|
12 |
+
|
13 |
+
# generate classification model from model_checkpoint
|
14 |
+
model = AutoModelForSequenceClassification.from_pretrained(base_model, num_labels=2, id2label = id2label, label2id = label2id, ignore_mismatched_sizes=True)
|
15 |
+
|
16 |
+
model = PeftModel.from_pretrained(model, adapter_model)
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(adapter_model)
|
18 |
+
|
19 |
+
def greet(text):
|
20 |
+
|
21 |
+
model.to('cpu')
|
22 |
+
inputs = tokenizer.encode(text, return_tensors="pt").to("cpu")
|
23 |
+
# compute logits
|
24 |
+
logits = model(inputs).logits
|
25 |
+
# convert logits to label
|
26 |
+
predictions = torch.argmax(logits)
|
27 |
+
|
28 |
+
return "This text is " + id2label[predictions.tolist()] + "!!"
|