Spaces:
Sleeping
Sleeping
# from syba.syba import SybaClassifier | |
# def SYBAscore(smiles_list): | |
# """ | |
# Compute the average SYBA score for a list of SMILES strings. | |
# Parameters: | |
# - smiles_list (list of str): A list of SMILES strings representing molecules. | |
# Returns: | |
# - float: The average SYBA score for the list of molecules. | |
# """ | |
# syba = SybaClassifier() | |
# syba.fitDefaultScore() | |
# scores = [] | |
# for smiles in smiles_list: | |
# try: | |
# score = syba.predict(smi=smiles) | |
# scores.append(score) | |
# except Exception as e: | |
# print(f"Error processing SMILES '{smiles}': {e}") | |
# continue | |
# if scores: | |
# return sum(scores) / len(scores) | |
# else: | |
# return None # Or handle empty list or all failed predictions as needed | |
# syba = SybaClassifier() | |
# syba.fitDefaultScore() | |
# smi = "O=C(C)Oc1ccccc1C(=O)O" | |
# print(syba.predict(smi)) | |
import sascorer |