Image-engine / main.py
saicharan1234's picture
Update main.py
edb8520 verified
raw
history blame
4.98 kB
import os
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import StreamingResponse
import torch
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler, DPMSolverSinglestepScheduler
from diffusers.pipelines import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download
import numpy as np
import random
from PIL import Image
import io
app = FastAPI()
MAX_SEED = np.iinfo(np.int32).max
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load HF token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
# Function to load pipeline dynamically
def load_pipeline(model_name: str):
if model_name == "Fluently XL Final":
pipe = StableDiffusionXLPipeline.from_single_file(
hf_hub_download(repo_id="fluently/Fluently-XL-Final", filename="FluentlyXL-Final.safetensors", token=HF_TOKEN),
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
elif model_name == "Fluently Anime":
pipe = StableDiffusionPipeline.from_pretrained(
"fluently/Fluently-anime",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
elif model_name == "Fluently Epic":
pipe = StableDiffusionPipeline.from_pretrained(
"fluently/Fluently-epic",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
elif model_name == "Fluently XL v4":
pipe = StableDiffusionXLPipeline.from_pretrained(
"fluently/Fluently-XL-v4",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
elif model_name == "Fluently XL v3 Lightning":
pipe = StableDiffusionXLPipeline.from_pretrained(
"fluently/Fluently-XL-v3-lightning",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = DPMSolverSinglestepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=False, timestep_spacing="trailing", lower_order_final=True)
elif model_name == "Fluently v4 inpaint":
pipe = StableDiffusionInpaintPipeline.from_pretrained(
"fluently/Fluently-v4-inpainting",
torch_dtype=torch.float16,
use_safetensors=True,
)
else:
raise ValueError(f"Unknown model: {model_name}")
pipe.to(device)
return pipe
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@app.post("/generate")
async def generate(
model: str = Form(...),
prompt: str = Form(...),
negative_prompt: str = Form(""),
use_negative_prompt: bool = Form(False),
seed: int = Form(0),
width: int = Form(1024),
height: int = Form(1024),
guidance_scale: float = Form(3),
randomize_seed: bool = Form(False),
inpaint_image: UploadFile = File(None),
mask_image: UploadFile = File(None),
blur_factor: float = Form(1.0),
strength: float = Form(0.75)
):
seed = int(randomize_seed_fn(seed, randomize_seed))
if not use_negative_prompt:
negative_prompt = ""
inpaint_image_pil = Image.open(io.BytesIO(await inpaint_image.read())) if inpaint_image else None
mask_image_pil = Image.open(io.BytesIO(await mask_image.read())) if mask_image else None
pipe = load_pipeline(model)
if model in ["Fluently v4 inpaint"]:
blurred_mask = pipe.mask_processor.blur(mask_image_pil, blur_factor=blur_factor)
images = pipe(
prompt=prompt,
image=inpaint_image_pil,
mask_image=blurred_mask,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=30,
strength=strength,
num_images_per_prompt=1,
output_type="pil",
).images
else:
images = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=25 if model == "Fluently XL Final" else 30,
num_images_per_prompt=1,
output_type="pil",
).images
img = images[0]
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr.seek(0)
return StreamingResponse(img_byte_arr, media_type="image/png")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)