Spaces:
Paused
Paused
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import copy | |
import math | |
from transformers import Wav2Vec2Model,Wav2Vec2Config | |
from transformers.modeling_outputs import BaseModelOutput | |
from typing import Optional, Tuple | |
_CONFIG_FOR_DOC = "Wav2Vec2Config" | |
# the implementation of Wav2Vec2Model is borrowed from https://huggingface.co/transformers/_modules/transformers/models/wav2vec2/modeling_wav2vec2.html#Wav2Vec2Model | |
# initialize our encoder with the pre-trained wav2vec 2.0 weights. | |
def _compute_mask_indices( | |
shape: Tuple[int, int], | |
mask_prob: float, | |
mask_length: int, | |
attention_mask: Optional[torch.Tensor] = None, | |
min_masks: int = 0, | |
) -> np.ndarray: | |
bsz, all_sz = shape | |
mask = np.full((bsz, all_sz), False) | |
all_num_mask = int( | |
mask_prob * all_sz / float(mask_length) | |
+ np.random.rand() | |
) | |
all_num_mask = max(min_masks, all_num_mask) | |
mask_idcs = [] | |
padding_mask = attention_mask.ne(1) if attention_mask is not None else None | |
for i in range(bsz): | |
if padding_mask is not None: | |
sz = all_sz - padding_mask[i].long().sum().item() | |
num_mask = int( | |
mask_prob * sz / float(mask_length) | |
+ np.random.rand() | |
) | |
num_mask = max(min_masks, num_mask) | |
else: | |
sz = all_sz | |
num_mask = all_num_mask | |
lengths = np.full(num_mask, mask_length) | |
if sum(lengths) == 0: | |
lengths[0] = min(mask_length, sz - 1) | |
min_len = min(lengths) | |
if sz - min_len <= num_mask: | |
min_len = sz - num_mask - 1 | |
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False) | |
mask_idc = np.asarray([mask_idc[j] + offset for j in range(len(mask_idc)) for offset in range(lengths[j])]) | |
mask_idcs.append(np.unique(mask_idc[mask_idc < sz])) | |
min_len = min([len(m) for m in mask_idcs]) | |
for i, mask_idc in enumerate(mask_idcs): | |
if len(mask_idc) > min_len: | |
mask_idc = np.random.choice(mask_idc, min_len, replace=False) | |
mask[i, mask_idc] = True | |
return mask | |
# linear interpolation layer | |
def linear_interpolation(features, input_fps, output_fps, output_len=None): | |
features = features.transpose(1, 2) | |
seq_len = features.shape[2] / float(input_fps) | |
if output_len is None: | |
output_len = int(seq_len * output_fps) | |
output_features = F.interpolate(features,size=output_len,align_corners=True,mode='linear') | |
return output_features.transpose(1, 2) | |
class Wav2Vec2Model(Wav2Vec2Model): | |
def __init__(self, config): | |
super().__init__(config) | |
self.args = config | |
self.args.audio_fps = 15 #args.audio_fps | |
#input_values 16K hz, 49fps, 20ms overlap, 25ms recepion field | |
def forward( | |
self, | |
input_values, | |
dataset="beat", | |
attention_mask=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
frame_num=None | |
): | |
#print(input_values.shape) | |
self.config.output_attentions = True | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
hidden_states = self.feature_extractor(input_values) | |
hidden_states = hidden_states.transpose(1, 2) | |
#print(hidden_states.shape) | |
if dataset == "beat": | |
hidden_states = linear_interpolation(hidden_states, 49, self.args.audio_fps, output_len=frame_num) | |
#print(hidden_states.shape) | |
if attention_mask is not None: | |
output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)) | |
attention_mask = torch.zeros( | |
hidden_states.shape[:2], dtype=hidden_states.dtype, device=hidden_states.device | |
) | |
attention_mask[ | |
(torch.arange(attention_mask.shape[0], device=hidden_states.device), output_lengths - 1) | |
] = 1 | |
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() | |
hidden_states = self.feature_projection(hidden_states)[0] | |
#print(hidden_states.shape) | |
if self.config.apply_spec_augment and self.training: | |
batch_size, sequence_length, hidden_size = hidden_states.size() | |
if self.config.mask_time_prob > 0: | |
mask_time_indices = _compute_mask_indices( | |
(batch_size, sequence_length), | |
self.config.mask_time_prob, | |
self.config.mask_time_length, | |
attention_mask=attention_mask, | |
min_masks=2, | |
) | |
hidden_states[torch.from_numpy(mask_time_indices)] = self.masked_spec_embed.to(hidden_states.dtype) | |
if self.config.mask_feature_prob > 0: | |
mask_feature_indices = _compute_mask_indices( | |
(batch_size, hidden_size), | |
self.config.mask_feature_prob, | |
self.config.mask_feature_length, | |
) | |
mask_feature_indices = torch.from_numpy(mask_feature_indices).to(hidden_states.device) | |
hidden_states[mask_feature_indices[:, None].expand(-1, sequence_length, -1)] = 0 | |
encoder_outputs = self.encoder( | |
hidden_states, | |
attention_mask=attention_mask, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
hidden_states = encoder_outputs[0] | |
#print(encoder_outputs.shape) | |
if not return_dict: | |
return (hidden_states,) + encoder_outputs[1:] | |
return hidden_states | |
# BaseModelOutput( | |
# last_hidden_state=hidden_states, | |
# hidden_states=encoder_outputs.hidden_states, | |
# attentions=encoder_outputs.attentions, | |
# ) |