Spaces:
Paused
Paused
"""Based on Daniel Holden code from: | |
A Deep Learning Framework for Character Motion Synthesis and Editing | |
(http://www.ipab.inf.ed.ac.uk/cgvu/motionsynthesis.pdf) | |
""" | |
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from .rotations import euler_angles_to_matrix, quaternion_to_matrix, rotation_6d_to_matrix | |
class ForwardKinematicsLayer(nn.Module): | |
""" Forward Kinematics Layer Class """ | |
def __init__(self, args=None, parents=None, positions=None, device=None): | |
super().__init__() | |
self.b_idxs = None | |
if device is None: | |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
else: | |
self.device = device | |
if parents is None and positions is None: | |
# Load SMPL skeleton (their joint order is different from the one we use for bvh export) | |
smpl_fname = os.path.join(args.smpl.smpl_body_model, args.data.gender, 'model.npz') | |
smpl_data = np.load(smpl_fname, encoding='latin1') | |
self.parents = torch.from_numpy(smpl_data['kintree_table'][0].astype(np.int32)).to(self.device) | |
self.parents = self.parents.long() | |
self.positions = torch.from_numpy(smpl_data['J'].astype(np.float32)).to(self.device) | |
self.positions[1:] -= self.positions[self.parents[1:]] | |
else: | |
self.parents = torch.from_numpy(parents).to(self.device) | |
self.parents = self.parents.long() | |
self.positions = torch.from_numpy(positions).to(self.device) | |
self.positions = self.positions.float() | |
self.positions[0] = 0 | |
def rotate(self, t0s, t1s): | |
return torch.matmul(t0s, t1s) | |
def identity_rotation(self, rotations): | |
diagonal = torch.diag(torch.tensor([1.0, 1.0, 1.0, 1.0])).to(self.device) | |
diagonal = torch.reshape( | |
diagonal, torch.Size([1] * len(rotations.shape[:2]) + [4, 4])) | |
ts = diagonal.repeat(rotations.shape[:2] + torch.Size([1, 1])) | |
return ts | |
def make_fast_rotation_matrices(self, positions, rotations): | |
if len(rotations.shape) == 4 and rotations.shape[-2:] == torch.Size([3, 3]): | |
rot_matrices = rotations | |
elif rotations.shape[-1] == 3: | |
rot_matrices = euler_angles_to_matrix(rotations, convention='XYZ') | |
elif rotations.shape[-1] == 4: | |
rot_matrices = quaternion_to_matrix(rotations) | |
elif rotations.shape[-1] == 6: | |
rot_matrices = rotation_6d_to_matrix(rotations) | |
else: | |
raise NotImplementedError(f'Unimplemented rotation representation in FK layer, shape of {rotations.shape}') | |
rot_matrices = torch.cat([rot_matrices, positions[..., None]], dim=-1) | |
zeros = torch.zeros(rot_matrices.shape[:-2] + torch.Size([1, 3])).to(self.device) | |
ones = torch.ones(rot_matrices.shape[:-2] + torch.Size([1, 1])).to(self.device) | |
zerosones = torch.cat([zeros, ones], dim=-1) | |
rot_matrices = torch.cat([rot_matrices, zerosones], dim=-2) | |
return rot_matrices | |
def rotate_global(self, parents, positions, rotations): | |
locals = self.make_fast_rotation_matrices(positions, rotations) | |
globals = self.identity_rotation(rotations) | |
globals = torch.cat([locals[:, 0:1], globals[:, 1:]], dim=1) | |
b_size = positions.shape[0] | |
if self.b_idxs is None: | |
self.b_idxs = torch.LongTensor(np.arange(b_size)).to(self.device) | |
elif self.b_idxs.shape[-1] != b_size: | |
self.b_idxs = torch.LongTensor(np.arange(b_size)).to(self.device) | |
for i in range(1, positions.shape[1]): | |
globals[:, i] = self.rotate( | |
globals[self.b_idxs, parents[i]], locals[:, i]) | |
return globals | |
def get_tpose_joints(self, offsets, parents): | |
num_joints = len(parents) | |
joints = [offsets[:, 0]] | |
for j in range(1, len(parents)): | |
joints.append(joints[parents[j]] + offsets[:, j]) | |
return torch.stack(joints, dim=1) | |
def canonical_to_local(self, canonical_xform, global_orient=None): | |
""" | |
Args: | |
canonical_xform: (B, J, 3, 3) | |
global_orient: (B, 3, 3) | |
Returns: | |
local_xform: (B, J, 3, 3) | |
""" | |
local_xform = torch.zeros_like(canonical_xform) | |
if global_orient is None: | |
global_xform = canonical_xform | |
else: | |
global_xform = torch.matmul(global_orient.unsqueeze(1), canonical_xform) | |
for i in range(global_xform.shape[1]): | |
if i == 0: | |
local_xform[:, i] = global_xform[:, i] | |
else: | |
local_xform[:, i] = torch.bmm(torch.linalg.inv(global_xform[:, self.parents[i]]), global_xform[:, i]) | |
return local_xform | |
def global_to_local(self, global_xform): | |
""" | |
Args: | |
global_xform: (B, J, 3, 3) | |
Returns: | |
local_xform: (B, J, 3, 3) | |
""" | |
local_xform = torch.zeros_like(global_xform) | |
for i in range(global_xform.shape[1]): | |
if i == 0: | |
local_xform[:, i] = global_xform[:, i] | |
else: | |
local_xform[:, i] = torch.bmm(torch.linalg.inv(global_xform[:, self.parents[i]]), global_xform[:, i]) | |
return local_xform | |
def forward(self, rotations, positions=None): | |
""" | |
Args: | |
rotations (B, J, D) | |
Returns: | |
The global position of each joint after FK (B, J, 3) | |
""" | |
# Get the full transform with rotations for skinning | |
b_size = rotations.shape[0] | |
if positions is None: | |
positions = self.positions.repeat(b_size, 1, 1) | |
transforms = self.rotate_global(self.parents, positions, rotations) | |
coordinates = transforms[:, :, :3, 3] / transforms[:, :, 3:, 3] | |
return coordinates, transforms | |