Spaces:
Paused
Paused
import numpy as np | |
import torch as t | |
import models.utils.dist_adapter as dist | |
import soundfile | |
import librosa | |
from models.utils.dist_utils import print_once | |
class DefaultSTFTValues: | |
def __init__(self, hps): | |
self.sr = hps.sr | |
self.n_fft = 2048 | |
self.hop_length = 256 | |
self.window_size = 6 * self.hop_length | |
class STFTValues: | |
def __init__(self, hps, n_fft, hop_length, window_size): | |
self.sr = hps.sr | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.window_size = window_size | |
def calculate_bandwidth(dataset, hps, duration=600): | |
hps = DefaultSTFTValues(hps) | |
n_samples = int(dataset.sr * duration) | |
l1, total, total_sq, n_seen, idx = 0.0, 0.0, 0.0, 0.0, dist.get_rank() | |
spec_norm_total, spec_nelem = 0.0, 0.0 | |
while n_seen < n_samples: | |
x = dataset[idx] | |
if isinstance(x, (tuple, list)): | |
x, y = x | |
samples = x.astype(np.float64) | |
stft = librosa.core.stft(np.mean(samples, axis=1), hps.n_fft, hop_length=hps.hop_length, win_length=hps.window_size) | |
spec = np.absolute(stft) | |
spec_norm_total += np.linalg.norm(spec) | |
spec_nelem += 1 | |
n_seen += int(np.prod(samples.shape)) | |
l1 += np.sum(np.abs(samples)) | |
total += np.sum(samples) | |
total_sq += np.sum(samples ** 2) | |
idx += max(16, dist.get_world_size()) | |
if dist.is_available(): | |
from jukebox.utils.dist_utils import allreduce | |
n_seen = allreduce(n_seen) | |
total = allreduce(total) | |
total_sq = allreduce(total_sq) | |
l1 = allreduce(l1) | |
spec_nelem = allreduce(spec_nelem) | |
spec_norm_total = allreduce(spec_norm_total) | |
mean = total / n_seen | |
bandwidth = dict(l2 = total_sq / n_seen - mean ** 2, | |
l1 = l1 / n_seen, | |
spec = spec_norm_total / spec_nelem) | |
print_once(bandwidth) | |
return bandwidth | |
def audio_preprocess(x, hps): | |
# Extra layer in case we want to experiment with different preprocessing | |
# For two channel, blend randomly into mono (standard is .5 left, .5 right) | |
# x: NTC | |
# x = x.float() | |
# if x.shape[-1]==2: | |
# if hps.aug_blend: | |
# mix=t.rand((x.shape[0],1), device=x.device) #np.random.rand() | |
# else: | |
# mix = 0.5 | |
# x=(mix*x[:,:,0]+(1-mix)*x[:,:,1]) | |
# elif x.shape[-1]==1: | |
# x=x[:,:,0] | |
# else: | |
# assert False, f'Expected channels {hps.channels}. Got unknown {x.shape[-1]} channels' | |
# # x: NT -> NTC | |
# x = x.unsqueeze(2) | |
return x | |
def audio_postprocess(x, hps): | |
return x | |
def stft(sig, hps): | |
return t.stft(sig, hps.n_fft, hps.hop_length, win_length=hps.window_size, window=t.hann_window(hps.window_size, device=sig.device)) | |
def spec(x, hps): | |
return t.norm(stft(x, hps), p=2, dim=-1) | |
def norm(x): | |
return (x.view(x.shape[0], -1) ** 2).sum(dim=-1).sqrt() | |
def squeeze(x): | |
if len(x.shape) == 3: | |
assert x.shape[-1] in [1,2] | |
x = t.mean(x, -1) | |
if len(x.shape) != 2: | |
raise ValueError(f'Unknown input shape {x.shape}') | |
return x | |
def spectral_loss(x_in, x_out, hps): | |
hps = DefaultSTFTValues(hps) | |
spec_in = spec(squeeze(x_in.float()), hps) | |
spec_out = spec(squeeze(x_out.float()), hps) | |
return norm(spec_in - spec_out) | |
def multispectral_loss(x_in, x_out, hps): | |
losses = [] | |
assert len(hps.multispec_loss_n_fft) == len(hps.multispec_loss_hop_length) == len(hps.multispec_loss_window_size) | |
args = [hps.multispec_loss_n_fft, | |
hps.multispec_loss_hop_length, | |
hps.multispec_loss_window_size] | |
for n_fft, hop_length, window_size in zip(*args): | |
hps = STFTValues(hps, n_fft, hop_length, window_size) | |
spec_in = spec(squeeze(x_in.float()), hps) | |
spec_out = spec(squeeze(x_out.float()), hps) | |
losses.append(norm(spec_in - spec_out)) | |
return sum(losses) / len(losses) | |
def spectral_convergence(x_in, x_out, hps, epsilon=2e-3): | |
hps = DefaultSTFTValues(hps) | |
spec_in = spec(squeeze(x_in.float()), hps) | |
spec_out = spec(squeeze(x_out.float()), hps) | |
gt_norm = norm(spec_in) | |
residual_norm = norm(spec_in - spec_out) | |
mask = (gt_norm > epsilon).float() | |
return (residual_norm * mask) / t.clamp(gt_norm, min=epsilon) | |
def log_magnitude_loss(x_in, x_out, hps, epsilon=1e-4): | |
hps = DefaultSTFTValues(hps) | |
spec_in = t.log(spec(squeeze(x_in.float()), hps) + epsilon) | |
spec_out = t.log(spec(squeeze(x_out.float()), hps) + epsilon) | |
return t.mean(t.abs(spec_in - spec_out)) | |
def load_audio(file, sr, offset, duration, mono=False): | |
# Librosa loads more filetypes than soundfile | |
x, _ = librosa.load(file, sr=sr, mono=mono, offset=offset/sr, duration=duration/sr) | |
if len(x.shape) == 1: | |
x = x.reshape((1, -1)) | |
return x | |
def save_wav(fname, aud, sr): | |
# clip before saving? | |
aud = t.clamp(aud, -1, 1).cpu().numpy() | |
for i in list(range(aud.shape[0])): | |
soundfile.write(f'{fname}/item_{i}.wav', aud[i], samplerate=sr, format='wav') | |