EMAGE / dataloaders /pymo /Quaternions.py
H-Liu1997's picture
Upload folder using huggingface_hub
2d47d90 verified
import numpy as np
class Quaternions:
"""
Quaternions is a wrapper around a numpy ndarray
that allows it to act as if it were an narray of
a quaternion data type.
Therefore addition, subtraction, multiplication,
division, negation, absolute, are all defined
in terms of quaternion operations such as quaternion
multiplication.
This allows for much neater code and many routines
which conceptually do the same thing to be written
in the same way for point data and for rotation data.
The Quaternions class has been desgined such that it
should support broadcasting and slicing in all of the
usual ways.
"""
def __init__(self, qs):
if isinstance(qs, np.ndarray):
if len(qs.shape) == 1: qs = np.array([qs])
self.qs = qs
return
if isinstance(qs, Quaternions):
self.qs = qs.qs
return
raise TypeError('Quaternions must be constructed from iterable, numpy array, or Quaternions, not %s' % type(qs))
def __str__(self): return "Quaternions("+ str(self.qs) + ")"
def __repr__(self): return "Quaternions("+ repr(self.qs) + ")"
""" Helper Methods for Broadcasting and Data extraction """
@classmethod
def _broadcast(cls, sqs, oqs, scalar=False):
if isinstance(oqs, float): return sqs, oqs * np.ones(sqs.shape[:-1])
ss = np.array(sqs.shape) if not scalar else np.array(sqs.shape[:-1])
os = np.array(oqs.shape)
if len(ss) != len(os):
raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))
if np.all(ss == os): return sqs, oqs
if not np.all((ss == os) | (os == np.ones(len(os))) | (ss == np.ones(len(ss)))):
raise TypeError('Quaternions cannot broadcast together shapes %s and %s' % (sqs.shape, oqs.shape))
sqsn, oqsn = sqs.copy(), oqs.copy()
for a in np.where(ss == 1)[0]: sqsn = sqsn.repeat(os[a], axis=a)
for a in np.where(os == 1)[0]: oqsn = oqsn.repeat(ss[a], axis=a)
return sqsn, oqsn
""" Adding Quaterions is just Defined as Multiplication """
def __add__(self, other): return self * other
def __sub__(self, other): return self / other
""" Quaterion Multiplication """
def __mul__(self, other):
"""
Quaternion multiplication has three main methods.
When multiplying a Quaternions array by Quaternions
normal quaternion multiplication is performed.
When multiplying a Quaternions array by a vector
array of the same shape, where the last axis is 3,
it is assumed to be a Quaternion by 3D-Vector
multiplication and the 3D-Vectors are rotated
in space by the Quaternions.
When multipplying a Quaternions array by a scalar
or vector of different shape it is assumed to be
a Quaternions by Scalars multiplication and the
Quaternions are scaled using Slerp and the identity
quaternions.
"""
""" If Quaternions type do Quaternions * Quaternions """
if isinstance(other, Quaternions):
sqs, oqs = Quaternions._broadcast(self.qs, other.qs)
q0 = sqs[...,0]; q1 = sqs[...,1];
q2 = sqs[...,2]; q3 = sqs[...,3];
r0 = oqs[...,0]; r1 = oqs[...,1];
r2 = oqs[...,2]; r3 = oqs[...,3];
qs = np.empty(sqs.shape)
qs[...,0] = r0 * q0 - r1 * q1 - r2 * q2 - r3 * q3
qs[...,1] = r0 * q1 + r1 * q0 - r2 * q3 + r3 * q2
qs[...,2] = r0 * q2 + r1 * q3 + r2 * q0 - r3 * q1
qs[...,3] = r0 * q3 - r1 * q2 + r2 * q1 + r3 * q0
return Quaternions(qs)
""" If array type do Quaternions * Vectors """
if isinstance(other, np.ndarray) and other.shape[-1] == 3:
vs = Quaternions(np.concatenate([np.zeros(other.shape[:-1] + (1,)), other], axis=-1))
return (self * (vs * -self)).imaginaries
""" If float do Quaternions * Scalars """
if isinstance(other, np.ndarray) or isinstance(other, float):
return Quaternions.slerp(Quaternions.id_like(self), self, other)
raise TypeError('Cannot multiply/add Quaternions with type %s' % str(type(other)))
def __div__(self, other):
"""
When a Quaternion type is supplied, division is defined
as multiplication by the inverse of that Quaternion.
When a scalar or vector is supplied it is defined
as multiplicaion of one over the supplied value.
Essentially a scaling.
"""
if isinstance(other, Quaternions): return self * (-other)
if isinstance(other, np.ndarray): return self * (1.0 / other)
if isinstance(other, float): return self * (1.0 / other)
raise TypeError('Cannot divide/subtract Quaternions with type %s' + str(type(other)))
def __eq__(self, other): return self.qs == other.qs
def __ne__(self, other): return self.qs != other.qs
def __neg__(self):
""" Invert Quaternions """
return Quaternions(self.qs * np.array([[1, -1, -1, -1]]))
def __abs__(self):
""" Unify Quaternions To Single Pole """
qabs = self.normalized().copy()
top = np.sum(( qabs.qs) * np.array([1,0,0,0]), axis=-1)
bot = np.sum((-qabs.qs) * np.array([1,0,0,0]), axis=-1)
qabs.qs[top < bot] = -qabs.qs[top < bot]
return qabs
def __iter__(self): return iter(self.qs)
def __len__(self): return len(self.qs)
def __getitem__(self, k): return Quaternions(self.qs[k])
def __setitem__(self, k, v): self.qs[k] = v.qs
@property
def lengths(self):
return np.sum(self.qs**2.0, axis=-1)**0.5
@property
def reals(self):
return self.qs[...,0]
@property
def imaginaries(self):
return self.qs[...,1:4]
@property
def shape(self): return self.qs.shape[:-1]
def repeat(self, n, **kwargs):
return Quaternions(self.qs.repeat(n, **kwargs))
def normalized(self):
return Quaternions(self.qs / self.lengths[...,np.newaxis])
def log(self):
norm = abs(self.normalized())
imgs = norm.imaginaries
lens = np.sqrt(np.sum(imgs**2, axis=-1))
lens = np.arctan2(lens, norm.reals) / (lens + 1e-10)
return imgs * lens[...,np.newaxis]
def constrained(self, axis):
rl = self.reals
im = np.sum(axis * self.imaginaries, axis=-1)
t1 = -2 * np.arctan2(rl, im) + np.pi
t2 = -2 * np.arctan2(rl, im) - np.pi
top = Quaternions.exp(axis[np.newaxis] * (t1[:,np.newaxis] / 2.0))
bot = Quaternions.exp(axis[np.newaxis] * (t2[:,np.newaxis] / 2.0))
img = self.dot(top) > self.dot(bot)
ret = top.copy()
ret[ img] = top[ img]
ret[~img] = bot[~img]
return ret
def constrained_x(self): return self.constrained(np.array([1,0,0]))
def constrained_y(self): return self.constrained(np.array([0,1,0]))
def constrained_z(self): return self.constrained(np.array([0,0,1]))
def dot(self, q): return np.sum(self.qs * q.qs, axis=-1)
def copy(self): return Quaternions(np.copy(self.qs))
def reshape(self, s):
self.qs.reshape(s)
return self
def interpolate(self, ws):
return Quaternions.exp(np.average(abs(self).log, axis=0, weights=ws))
def euler(self, order='xyz'):
q = self.normalized().qs
q0 = q[...,0]
q1 = q[...,1]
q2 = q[...,2]
q3 = q[...,3]
es = np.zeros(self.shape + (3,))
if order == 'xyz':
es[...,0] = np.arctan2(2 * (q0 * q1 + q2 * q3), 1 - 2 * (q1 * q1 + q2 * q2))
es[...,1] = np.arcsin((2 * (q0 * q2 - q3 * q1)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q3 + q1 * q2), 1 - 2 * (q2 * q2 + q3 * q3))
elif order == 'yzx':
es[...,0] = np.arctan2(2 * (q1 * q0 - q2 * q3), -q1 * q1 + q2 * q2 - q3 * q3 + q0 * q0)
es[...,1] = np.arctan2(2 * (q2 * q0 - q1 * q3), q1 * q1 - q2 * q2 - q3 * q3 + q0 * q0)
es[...,2] = np.arcsin((2 * (q1 * q2 + q3 * q0)).clip(-1,1))
else:
raise NotImplementedError('Cannot convert from ordering %s' % order)
"""
# These conversion don't appear to work correctly for Maya.
# http://bediyap.com/programming/convert-quaternion-to-euler-rotations/
if order == 'xyz':
es[...,0] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
es[...,1] = np.arcsin((2 * (q1 * q3 + q0 * q2)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
elif order == 'yzx':
es[...,0] = np.arctan2(2 * (q0 * q1 - q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
es[...,1] = np.arcsin((2 * (q1 * q2 + q0 * q3)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
elif order == 'zxy':
es[...,0] = np.arctan2(2 * (q0 * q2 - q1 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
es[...,1] = np.arcsin((2 * (q0 * q1 + q2 * q3)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q3 - q1 * q2), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
elif order == 'xzy':
es[...,0] = np.arctan2(2 * (q0 * q2 + q1 * q3), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
es[...,1] = np.arcsin((2 * (q0 * q3 - q1 * q2)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
elif order == 'yxz':
es[...,0] = np.arctan2(2 * (q1 * q2 + q0 * q3), q0 * q0 - q1 * q1 + q2 * q2 - q3 * q3)
es[...,1] = np.arcsin((2 * (q0 * q1 - q2 * q3)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q1 * q3 + q0 * q2), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
elif order == 'zyx':
es[...,0] = np.arctan2(2 * (q0 * q1 + q2 * q3), q0 * q0 - q1 * q1 - q2 * q2 + q3 * q3)
es[...,1] = np.arcsin((2 * (q0 * q2 - q1 * q3)).clip(-1,1))
es[...,2] = np.arctan2(2 * (q0 * q3 + q1 * q2), q0 * q0 + q1 * q1 - q2 * q2 - q3 * q3)
else:
raise KeyError('Unknown ordering %s' % order)
"""
# https://github.com/ehsan/ogre/blob/master/OgreMain/src/OgreMatrix3.cpp
# Use this class and convert from matrix
return es
def average(self):
if len(self.shape) == 1:
import numpy.core.umath_tests as ut
system = ut.matrix_multiply(self.qs[:,:,np.newaxis], self.qs[:,np.newaxis,:]).sum(axis=0)
w, v = np.linalg.eigh(system)
qiT_dot_qref = (self.qs[:,:,np.newaxis] * v[np.newaxis,:,:]).sum(axis=1)
return Quaternions(v[:,np.argmin((1.-qiT_dot_qref**2).sum(axis=0))])
else:
raise NotImplementedError('Cannot average multi-dimensionsal Quaternions')
def angle_axis(self):
norm = self.normalized()
s = np.sqrt(1 - (norm.reals**2.0))
s[s == 0] = 0.001
angles = 2.0 * np.arccos(norm.reals)
axis = norm.imaginaries / s[...,np.newaxis]
return angles, axis
def transforms(self):
qw = self.qs[...,0]
qx = self.qs[...,1]
qy = self.qs[...,2]
qz = self.qs[...,3]
x2 = qx + qx; y2 = qy + qy; z2 = qz + qz;
xx = qx * x2; yy = qy * y2; wx = qw * x2;
xy = qx * y2; yz = qy * z2; wy = qw * y2;
xz = qx * z2; zz = qz * z2; wz = qw * z2;
m = np.empty(self.shape + (3,3))
m[...,0,0] = 1.0 - (yy + zz)
m[...,0,1] = xy - wz
m[...,0,2] = xz + wy
m[...,1,0] = xy + wz
m[...,1,1] = 1.0 - (xx + zz)
m[...,1,2] = yz - wx
m[...,2,0] = xz - wy
m[...,2,1] = yz + wx
m[...,2,2] = 1.0 - (xx + yy)
return m
def ravel(self):
return self.qs.ravel()
@classmethod
def id(cls, n):
if isinstance(n, tuple):
qs = np.zeros(n + (4,))
qs[...,0] = 1.0
return Quaternions(qs)
if isinstance(n, int) or isinstance(n, long):
qs = np.zeros((n,4))
qs[:,0] = 1.0
return Quaternions(qs)
raise TypeError('Cannot Construct Quaternion from %s type' % str(type(n)))
@classmethod
def id_like(cls, a):
qs = np.zeros(a.shape + (4,))
qs[...,0] = 1.0
return Quaternions(qs)
@classmethod
def exp(cls, ws):
ts = np.sum(ws**2.0, axis=-1)**0.5
ts[ts == 0] = 0.001
ls = np.sin(ts) / ts
qs = np.empty(ws.shape[:-1] + (4,))
qs[...,0] = np.cos(ts)
qs[...,1] = ws[...,0] * ls
qs[...,2] = ws[...,1] * ls
qs[...,3] = ws[...,2] * ls
return Quaternions(qs).normalized()
@classmethod
def slerp(cls, q0s, q1s, a):
fst, snd = cls._broadcast(q0s.qs, q1s.qs)
fst, a = cls._broadcast(fst, a, scalar=True)
snd, a = cls._broadcast(snd, a, scalar=True)
len = np.sum(fst * snd, axis=-1)
neg = len < 0.0
len[neg] = -len[neg]
snd[neg] = -snd[neg]
amount0 = np.zeros(a.shape)
amount1 = np.zeros(a.shape)
linear = (1.0 - len) < 0.01
omegas = np.arccos(len[~linear])
sinoms = np.sin(omegas)
amount0[ linear] = 1.0 - a[linear]
amount1[ linear] = a[linear]
amount0[~linear] = np.sin((1.0 - a[~linear]) * omegas) / sinoms
amount1[~linear] = np.sin( a[~linear] * omegas) / sinoms
return Quaternions(
amount0[...,np.newaxis] * fst +
amount1[...,np.newaxis] * snd)
@classmethod
def between(cls, v0s, v1s):
a = np.cross(v0s, v1s)
w = np.sqrt((v0s**2).sum(axis=-1) * (v1s**2).sum(axis=-1)) + (v0s * v1s).sum(axis=-1)
return Quaternions(np.concatenate([w[...,np.newaxis], a], axis=-1)).normalized()
@classmethod
def from_angle_axis(cls, angles, axis):
axis = axis / (np.sqrt(np.sum(axis**2, axis=-1)) + 1e-10)[...,np.newaxis]
sines = np.sin(angles / 2.0)[...,np.newaxis]
cosines = np.cos(angles / 2.0)[...,np.newaxis]
return Quaternions(np.concatenate([cosines, axis * sines], axis=-1))
@classmethod
def from_euler(cls, es, order='xyz', world=False):
axis = {
'x' : np.array([1,0,0]),
'y' : np.array([0,1,0]),
'z' : np.array([0,0,1]),
}
q0s = Quaternions.from_angle_axis(es[...,0], axis[order[0]])
q1s = Quaternions.from_angle_axis(es[...,1], axis[order[1]])
q2s = Quaternions.from_angle_axis(es[...,2], axis[order[2]])
return (q2s * (q1s * q0s)) if world else (q0s * (q1s * q2s))
@classmethod
def from_transforms(cls, ts):
d0, d1, d2 = ts[...,0,0], ts[...,1,1], ts[...,2,2]
q0 = ( d0 + d1 + d2 + 1.0) / 4.0
q1 = ( d0 - d1 - d2 + 1.0) / 4.0
q2 = (-d0 + d1 - d2 + 1.0) / 4.0
q3 = (-d0 - d1 + d2 + 1.0) / 4.0
q0 = np.sqrt(q0.clip(0,None))
q1 = np.sqrt(q1.clip(0,None))
q2 = np.sqrt(q2.clip(0,None))
q3 = np.sqrt(q3.clip(0,None))
c0 = (q0 >= q1) & (q0 >= q2) & (q0 >= q3)
c1 = (q1 >= q0) & (q1 >= q2) & (q1 >= q3)
c2 = (q2 >= q0) & (q2 >= q1) & (q2 >= q3)
c3 = (q3 >= q0) & (q3 >= q1) & (q3 >= q2)
q1[c0] *= np.sign(ts[c0,2,1] - ts[c0,1,2])
q2[c0] *= np.sign(ts[c0,0,2] - ts[c0,2,0])
q3[c0] *= np.sign(ts[c0,1,0] - ts[c0,0,1])
q0[c1] *= np.sign(ts[c1,2,1] - ts[c1,1,2])
q2[c1] *= np.sign(ts[c1,1,0] + ts[c1,0,1])
q3[c1] *= np.sign(ts[c1,0,2] + ts[c1,2,0])
q0[c2] *= np.sign(ts[c2,0,2] - ts[c2,2,0])
q1[c2] *= np.sign(ts[c2,1,0] + ts[c2,0,1])
q3[c2] *= np.sign(ts[c2,2,1] + ts[c2,1,2])
q0[c3] *= np.sign(ts[c3,1,0] - ts[c3,0,1])
q1[c3] *= np.sign(ts[c3,2,0] + ts[c3,0,2])
q2[c3] *= np.sign(ts[c3,2,1] + ts[c3,1,2])
qs = np.empty(ts.shape[:-2] + (4,))
qs[...,0] = q0
qs[...,1] = q1
qs[...,2] = q2
qs[...,3] = q3
return cls(qs)