Spaces:
Sleeping
Sleeping
import numpy as np | |
import streamlit as st | |
from tensorflow.keras.preprocessing.sequence import pad_sequences | |
from tensorflow.keras.models import load_model, Model | |
from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input | |
from tensorflow.keras.preprocessing.text import tokenizer_from_json | |
from tensorflow.keras.preprocessing.image import load_img, img_to_array | |
from PIL import Image | |
def init_lstm_model(): | |
return load_model("./best_model.h5") | |
def init_vgg16_model(): | |
vgg_model = VGG16() | |
return Model(inputs = vgg_model.inputs , outputs = vgg_model.layers[-2].output) | |
def init_lstm_tokenizer(): | |
with open("./tokenizer.txt") as rf: | |
return tokenizer_from_json(rf.read()) | |
vgg16_model = init_vgg16_model() | |
lstm_model = init_lstm_model() | |
lstm_tokenizer = init_lstm_tokenizer() | |
max_length = 34 | |
def idx_to_word(integer): | |
for word, index in lstm_tokenizer.word_index.items(): | |
if index == integer: | |
return word | |
return None | |
def predict_caption(image, max_length): | |
# add start tag for generation process | |
in_text = 'startseq' | |
# iterate over the max length of sequence | |
for _ in range(max_length): | |
# encode input sequence | |
sequence = lstm_tokenizer.texts_to_sequences([in_text])[0] | |
# pad the sequence | |
sequence = pad_sequences([sequence], max_length) | |
# predict next word | |
yhat = lstm_model.predict([image, sequence], verbose=0) | |
# get index with high probability | |
yhat = np.argmax(yhat) | |
# convert index to word | |
word = idx_to_word(yhat, lstm_tokenizer) | |
# stop if word not found | |
if word is None: | |
break | |
# append word as input for generating next word | |
in_text += " " + word | |
# stop if we reach end tag | |
if word == 'endseq': | |
break | |
return in_text | |
def generate_caption(image_name): | |
# load the image | |
image = load_img(image_name, target_size=(224, 224)) | |
# convert image pixels to numpy array | |
image = img_to_array(image) | |
# reshape data for model | |
image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2])) | |
# preprocess image for vgg | |
image = preprocess_input(image) | |
feature = vgg16_model.predict(image) | |
# predict the caption | |
y_pred = predict_caption(feature, max_length) | |
return y_pred.repalce("startseq", "").replace("endseq", "").strip() | |
st.title(""" | |
Image Captioner. | |
This app generates a caption for the input image. The results will be predicted from the basic cnn-rnn to advanced transformer based encoder-decoder models.""") | |
file_name = st.file_uploader("Upload an image to generate caption...") | |
if file_name is not None: | |
col1, col2 = st.columns(2) | |
image = Image.open(file_name) | |
col1.image(image, use_column_width=True) | |
prediction = generate_caption(file_name) | |
col2.header("Predictions") | |
col2.subheader(f"VGG16-LSTM : {prediction}") |