Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
from sam2.build_sam import build_sam2_video_predictor, build_sam2 | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
import cv2 | |
import traceback | |
import matplotlib.pyplot as plt | |
import ffmpeg | |
from utils import load_model_without_flash_attn | |
import spaces | |
# CUDA optimizations | |
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() | |
if torch.cuda.get_device_properties(0).major >= 8: | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
# Initialize models | |
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt" | |
model_cfg = "sam2_hiera_l.yaml" | |
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint) | |
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda") | |
image_predictor = SAM2ImagePredictor(sam2_model) | |
model_id = 'microsoft/Florence-2-large' | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def load_florence_model(): | |
return AutoModelForCausalLM.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 if device == "cuda" else torch.float32 | |
).eval().to(device) | |
florence_model = load_model_without_flash_attn(load_florence_model) | |
florence_processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
def apply_color_mask(frame, mask, obj_id): | |
cmap = plt.get_cmap("tab10") | |
color = np.array(cmap(obj_id % 10)[:3]) # Use modulo 10 to cycle through colors | |
# Ensure mask has the correct shape | |
if mask.ndim == 4: | |
mask = mask.squeeze() # Remove singleton dimensions | |
if mask.ndim == 3 and mask.shape[0] == 1: | |
mask = mask[0] # Take the first channel if it's a single-channel 3D array | |
# Reshape mask to match frame dimensions | |
mask = cv2.resize(mask.astype(np.float32), (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LINEAR) | |
# Expand dimensions of mask and color for broadcasting | |
mask = np.expand_dims(mask, axis=2) | |
color = color.reshape(1, 1, 3) | |
colored_mask = mask * color | |
return frame * (1 - mask) + colored_mask * 255 | |
def run_florence(image, text_input): | |
task_prompt = '<OPEN_VOCABULARY_DETECTION>' | |
prompt = task_prompt + text_input | |
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to('cuda', torch.bfloat16) | |
generated_ids = florence_model.generate( | |
input_ids=inputs["input_ids"].cuda(), | |
pixel_values=inputs["pixel_values"].cuda(), | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = florence_processor.post_process_generation( | |
generated_text, | |
task=task_prompt, | |
image_size=(image.width, image.height) | |
) | |
bboxes = parsed_answer[task_prompt]['bboxes'] | |
if not bboxes: | |
print(f"No objects detected for prompt: '{text_input}'. Trying with a default bounding box.") | |
# Return a default bounding box covering the entire image | |
return [0, 0, image.width, image.height] | |
return bboxes[0] | |
def remove_directory_contents(directory): | |
for root, dirs, files in os.walk(directory, topdown=False): | |
for name in files: | |
os.remove(os.path.join(root, name)) | |
for name in dirs: | |
os.rmdir(os.path.join(root, name)) | |
def process_video(video_path, prompt, target_fps=30, max_dimension=640): | |
try: | |
# Get video info | |
probe = ffmpeg.probe(video_path) | |
video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video') | |
width = int(video_info['width']) | |
height = int(video_info['height']) | |
original_fps = eval(video_info['r_frame_rate']) | |
# Calculate new dimensions while maintaining aspect ratio | |
if width > height: | |
if width > max_dimension: | |
new_width = max_dimension | |
new_height = int(height * (max_dimension / width)) | |
else: | |
new_width = width | |
new_height = height | |
else: | |
if height > max_dimension: | |
new_height = max_dimension | |
new_width = int(width * (max_dimension / height)) | |
else: | |
new_width = width | |
new_height = height | |
# Determine target fps | |
fps = min(original_fps, target_fps) | |
print(f"Original video: {width}x{height}, {original_fps} fps") | |
print(f"Processing at: {new_width}x{new_height}, {fps} fps") | |
# Read and resize frames | |
out, _ = ( | |
ffmpeg | |
.input(video_path) | |
.filter('fps', fps=fps) | |
.filter('scale', width=new_width, height=new_height) | |
.output('pipe:', format='rawvideo', pix_fmt='rgb24') | |
.run(capture_stdout=True) | |
) | |
frames = np.frombuffer(out, np.uint8).reshape([-1, new_height, new_width, 3]) | |
print(f"Read {len(frames)} frames") | |
# Florence detection on first frame | |
first_frame = Image.fromarray(frames[0]) | |
mask_box = run_florence(first_frame, prompt) | |
print("Original mask box:", mask_box) | |
# Convert mask_box to numpy array | |
mask_box = np.array(mask_box) | |
print("Reshaped mask box:", mask_box) | |
# SAM2 segmentation on first frame | |
image_predictor.set_image(first_frame) | |
masks, _, _ = image_predictor.predict( | |
point_coords=None, | |
point_labels=None, | |
box=mask_box[None, :], | |
multimask_output=False, | |
) | |
print("masks.shape", masks.shape) | |
mask = masks.squeeze().astype(bool) | |
print("Mask shape:", mask.shape) | |
print("Frame shape:", frames[0].shape) | |
# SAM2 video propagation | |
temp_dir = "temp_frames" | |
os.makedirs(temp_dir, exist_ok=True) | |
for i, frame in enumerate(frames): | |
Image.fromarray(frame).save(os.path.join(temp_dir, f"{i:04d}.jpg")) | |
print(f"Saved {len(frames)} temporary frames") | |
inference_state = video_predictor.init_state(video_path=temp_dir) | |
_, _, _ = video_predictor.add_new_mask( | |
inference_state=inference_state, | |
frame_idx=0, | |
obj_id=1, | |
mask=mask | |
) | |
video_segments = {} | |
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state): | |
video_segments[out_frame_idx] = { | |
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() | |
for i, out_obj_id in enumerate(out_obj_ids) | |
} | |
print('Segmenting for main vid done') | |
print(f"Number of segmented frames: {len(video_segments)}") | |
# Apply segmentation masks to frames | |
all_segmented_frames = [] | |
for i, frame in enumerate(frames): | |
if i in video_segments: | |
for out_obj_id, mask in video_segments[i].items(): | |
frame = apply_color_mask(frame, mask, out_obj_id) | |
all_segmented_frames.append(frame.astype(np.uint8)) | |
else: | |
all_segmented_frames.append(frame) | |
print(f"Applied masks to {len(all_segmented_frames)} frames") | |
# Clean up temporary files | |
remove_directory_contents(temp_dir) | |
os.rmdir(temp_dir) | |
# Write output video using ffmpeg | |
output_path = "segmented_video.mp4" | |
process = ( | |
ffmpeg | |
.input('pipe:', format='rawvideo', pix_fmt='rgb24', s=f'{new_width}x{new_height}', r=fps) | |
.output(output_path, pix_fmt='yuv420p') | |
.overwrite_output() | |
.run_async(pipe_stdin=True) | |
) | |
for frame in all_segmented_frames: | |
process.stdin.write(frame.tobytes()) | |
process.stdin.close() | |
process.wait() | |
if not os.path.exists(output_path): | |
raise ValueError(f"Output video file was not created: {output_path}") | |
print(f"Successfully created output video: {output_path}") | |
return output_path | |
except Exception as e: | |
print(f"Error in process_video: {str(e)}") | |
print(traceback.format_exc()) # This will print the full stack trace | |
return None | |
def segment_video(video_file, prompt): | |
if video_file is None: | |
return None | |
output_video = process_video(video_file, prompt) | |
return output_video | |
demo = gr.Interface( | |
fn=segment_video, | |
inputs=[ | |
gr.Video(label="Upload Video (Keep it under 10 seconds for this demo)"), | |
gr.Textbox(label="Enter text prompt for object detection (eg - Gymnast , Car ) ") | |
], | |
outputs=gr.Video(label="Segmented Video"), | |
title="Text-Prompted Video Object Segmentation with SAMv2", | |
description=""" | |
This demo uses [Florence-2](https://huggingface.co/microsoft/Florence-2-large), to enable text-prompted object detection for [SAM2](https://github.com/facebookresearch/segment-anything). | |
1. Upload a short video (< 10 sec , you can fork this space on larger GPU for longer vids) | |
2. Describe the object to segment (The object should be visible in the first frame). | |
3. Get your segmented video. | |
""" | |
) | |
demo.launch() |