Commit
·
6699d1c
1
Parent(s):
d59f397
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from bert_model import BERTEmbedding
|
3 |
+
from utils import build_vocab, get_embedding_tensor
|
4 |
+
from sklearn.decomposition import PCA
|
5 |
+
import plotly.express as px
|
6 |
+
|
7 |
+
|
8 |
+
def plot_2d_embeddings(embeddings, sentence):
|
9 |
+
pca = PCA(n_components=2)
|
10 |
+
reduced = pca.fit_transform(embeddings[0].detach().numpy())
|
11 |
+
fig = px.scatter(
|
12 |
+
x=reduced[:, 0],
|
13 |
+
y=reduced[:, 1],
|
14 |
+
text=sentence.split()
|
15 |
+
)
|
16 |
+
st.plotly_chart(fig)
|
17 |
+
|
18 |
+
def plot_3d_embeddings(embeddings, sentence):
|
19 |
+
pca = PCA(n_components=3)
|
20 |
+
reduced = pca.fit_transform(embeddings[0].detach().numpy())
|
21 |
+
fig = px.scatter_3d(
|
22 |
+
x=reduced[:, 0],
|
23 |
+
y=reduced[:, 1],
|
24 |
+
z=reduced[:, 2],
|
25 |
+
text=sentence.split()
|
26 |
+
)
|
27 |
+
st.plotly_chart(fig)
|
28 |
+
|
29 |
+
# Configuration
|
30 |
+
N_SEGMENTS = 2
|
31 |
+
MAX_LEN = 512
|
32 |
+
EMBED_DIM = 768
|
33 |
+
N_LAYERS = 12
|
34 |
+
ATTN_HEADS = 12
|
35 |
+
DROPOUT = 0.1
|
36 |
+
|
37 |
+
|
38 |
+
def main():
|
39 |
+
st.title("BERT Embeddings Visualization")
|
40 |
+
|
41 |
+
uploaded_file = st.file_uploader("Upload a text file to build vocabulary", type=['txt'])
|
42 |
+
|
43 |
+
if uploaded_file:
|
44 |
+
uploaded_data = uploaded_file.read().decode('utf-8').splitlines()
|
45 |
+
st.success("Vocabulary built successfully!")
|
46 |
+
else:
|
47 |
+
st.warning("Using default vocabulary.")
|
48 |
+
with open('data/default_vocab.txt', 'r') as file:
|
49 |
+
uploaded_data = file.read().splitlines()
|
50 |
+
|
51 |
+
vocab = build_vocab(uploaded_data)
|
52 |
+
|
53 |
+
VOCAB_SIZE = len(vocab)
|
54 |
+
embedding_layer = BERTEmbedding(VOCAB_SIZE, N_SEGMENTS, MAX_LEN, EMBED_DIM, DROPOUT)
|
55 |
+
|
56 |
+
user_sentence = st.text_input("Enter your sentence:", "AI in healthcare predicts patient outcomes and diagnoses.")
|
57 |
+
|
58 |
+
viz_option = st.selectbox("Select Visualization Type", ["2D", "3D"])
|
59 |
+
|
60 |
+
if st.button('Visualize Embeddings'):
|
61 |
+
embedding_tensor = get_embedding_tensor(user_sentence, vocab, embedding_layer)
|
62 |
+
|
63 |
+
if viz_option == "2D":
|
64 |
+
plot_2d_embeddings(embedding_tensor, user_sentence)
|
65 |
+
elif viz_option == "3D":
|
66 |
+
plot_3d_embeddings(embedding_tensor, user_sentence)
|
67 |
+
|
68 |
+
if __name__ == "__main__":
|
69 |
+
main()
|