ModelTrain / app.py
saherPervaiz's picture
Update app.py
3cd97b7 verified
import streamlit as st
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.svm import SVC, SVR
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_squared_error, mean_absolute_error, r2_score
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from io import BytesIO
# Streamlit app title
st.title("Model Training with Outlier Removal, Metrics, and Correlation Heatmap")
# File uploader
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"])
if uploaded_file is not None:
# Read the uploaded CSV file
df = pd.read_csv(uploaded_file)
# Display the dataset
st.write("Dataset:")
st.dataframe(df)
# Convert categorical (str) data to numerical
st.write("Converting Categorical Columns to Numerical Values:")
label_encoder = LabelEncoder()
for col in df.columns:
if df[col].dtype == 'object' or len(df[col].unique()) <= 10:
st.write(f"Encoding Column: **{col}**")
df[col] = label_encoder.fit_transform(df[col])
# Display the dataset after conversion
st.write("Dataset After Conversion:")
st.dataframe(df)
# Handle missing values
st.write("Handling Missing (Null) Values:")
fill_method = st.selectbox("Choose how to handle missing values", ["Drop rows", "Fill with mean/median"])
if fill_method == "Drop rows":
df = df.dropna()
elif fill_method == "Fill with mean/median":
for col in df.columns:
if df[col].dtype in ['float64', 'int64']:
df[col].fillna(df[col].mean(), inplace=True)
else:
df[col].fillna(df[col].mode()[0], inplace=True)
# Remove outliers using the IQR method
st.write("Removing Outliers Using IQR:")
def remove_outliers_iqr(data, column):
Q1 = data[column].quantile(0.25)
Q3 = data[column].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
return data[(data[column] >= lower_bound) & (data[column] <= upper_bound)]
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns
for col in numeric_cols:
original_count = len(df)
df = remove_outliers_iqr(df, col)
st.write(f"Removed outliers from **{col}**: {original_count - len(df)} rows removed.")
# Capping Extreme Values (based on 5% and 95% percentiles)
st.write("Handling Extreme Values (Capping):")
def cap_extreme_values(dataframe):
for col in dataframe.select_dtypes(include=[np.number]).columns:
lower_limit = dataframe[col].quantile(0.05)
upper_limit = dataframe[col].quantile(0.95)
dataframe[col] = np.clip(dataframe[col], lower_limit, upper_limit)
return dataframe
df = cap_extreme_values(df)
# Display dataset after cleaning
st.write("Dataset After Outlier Removal and Capping Extreme Values:")
st.dataframe(df)
# Add clean data download option
st.subheader("Download Cleaned Dataset")
st.download_button(
label="Download Cleaned Dataset (CSV)",
data=df.to_csv(index=False),
file_name="cleaned_dataset.csv",
mime="text/csv"
)
# Correlation Heatmap
st.subheader("Correlation Heatmap")
corr = df.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", cbar=True)
st.pyplot(plt)
# Save heatmap as PNG
buf = BytesIO()
plt.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Correlation Heatmap as PNG",
data=buf,
file_name="correlation_heatmap.png",
mime="image/png"
)
# Highlight highly correlated pairs
st.subheader("Highly Correlated Features")
high_corr = corr.abs().unstack().sort_values(ascending=False).drop_duplicates()
high_corr = high_corr[high_corr.index.get_level_values(0) != high_corr.index.get_level_values(1)]
high_corr_df = pd.DataFrame(high_corr, columns=["Correlation"])
st.dataframe(high_corr_df)
# Download correlation table as CSV
st.download_button(
label="Download Correlation Table (CSV)",
data=high_corr_df.to_csv(index=True),
file_name="correlation_table.csv",
mime="text/csv"
)
# Select target variable
target = st.selectbox("Select Target Variable", df.columns)
features = [col for col in df.columns if col != target]
X = df[features]
y = df[target]
if len(y.unique()) > 1: # Ensure the target variable has at least two unique classes/values
if y.dtype == 'object' or len(y.unique()) <= 10: # Classification
st.subheader("Classification Model Training")
classifiers = {
'Logistic Regression': LogisticRegression(max_iter=2000),
'Decision Tree': DecisionTreeClassifier(),
'Random Forest': RandomForestClassifier(),
'Support Vector Machine (SVM)': SVC(),
'K-Nearest Neighbors (k-NN)': KNeighborsClassifier(),
'Naive Bayes': GaussianNB()
}
metrics = []
train_size = st.slider("Select Training Size", min_value=0.1, max_value=0.9, value=0.8)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=1-train_size, stratify=y, random_state=42
)
for name, classifier in classifiers.items():
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
metrics.append({
'Model': name,
'Accuracy': round(accuracy_score(y_test, y_pred), 2),
'Precision': round(precision_score(y_test, y_pred, zero_division=1, average='macro'), 2),
'Recall': round(recall_score(y_test, y_pred, zero_division=1, average='macro'), 2),
'F1-Score': round(f1_score(y_test, y_pred, zero_division=1, average='macro'), 2)
})
metrics_df = pd.DataFrame(metrics)
st.subheader("Classification Model Performance Metrics")
st.dataframe(metrics_df)
# Save metrics as PNG (table form)
fig, ax = plt.subplots(figsize=(8, 4))
ax.axis('tight')
ax.axis('off')
table = plt.table(cellText=metrics_df.values, colLabels=metrics_df.columns, cellLoc='center', loc='center')
table.auto_set_font_size(False)
table.set_fontsize(10)
table.auto_set_column_width(col=list(range(len(metrics_df.columns))))
buf = BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Classification Metrics Table as PNG",
data=buf,
file_name="classification_metrics_table.png",
mime="image/png"
)
# Visualization (Bar Graphs for Classification)
st.subheader("Classification Model Performance Metrics Graph")
metrics_df.set_index('Model', inplace=True)
ax = metrics_df.plot(kind='bar', figsize=(10, 6), colormap='coolwarm', rot=45)
plt.title("Classification Models - Performance Metrics")
plt.ylabel("Scores")
plt.xlabel("Models")
st.pyplot(plt)
# Download button for the bar graph
buf = BytesIO()
ax.figure.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Classification Performance Graph as PNG",
data=buf,
file_name="classification_performance_graph.png",
mime="image/png"
)
else: # Regression
st.subheader("Regression Model Training")
regressors = {
'Linear Regression': LinearRegression(),
'Decision Tree Regressor': DecisionTreeRegressor(),
'Random Forest Regressor': RandomForestRegressor(),
'Support Vector Regressor (SVR)': SVR(),
'K-Nearest Neighbors Regressor (k-NN)': KNeighborsRegressor()
}
regression_metrics = []
train_size = st.slider("Select Training Size", min_value=0.1, max_value=0.9, value=0.8)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=1-train_size, random_state=42
)
for name, regressor in regressors.items():
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
regression_metrics.append({
'Model': name,
'Mean Squared Error (MSE)': round(mean_squared_error(y_test, y_pred), 2),
'Mean Absolute Error (MAE)': round(mean_absolute_error(y_test, y_pred), 2),
'R² Score': round(r2_score(y_test, y_pred), 2)
})
regression_metrics_df = pd.DataFrame(regression_metrics)
st.subheader("Regression Model Performance Metrics")
st.dataframe(regression_metrics_df)
# Save metrics as PNG (table form)
fig, ax = plt.subplots(figsize=(8, 4))
ax.axis('tight')
ax.axis('off')
table = plt.table(cellText=regression_metrics_df.values, colLabels=regression_metrics_df.columns, cellLoc='center', loc='center')
table.auto_set_font_size(False)
table.set_fontsize(10)
table.auto_set_column_width(col=list(range(len(regression_metrics_df.columns))))
buf = BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Regression Metrics Table as PNG",
data=buf,
file_name="regression_metrics_table.png",
mime="image/png"
)
# Visualization (Bar Graphs for Regression)
st.subheader("Regression Model Performance Metrics Graph")
regression_metrics_df.set_index('Model', inplace=True)
ax = regression_metrics_df.plot(kind='bar', figsize=(10, 6), colormap='coolwarm', rot=45)
plt.title("Regression Models - Performance Metrics")
plt.ylabel("Scores")
plt.xlabel("Models")
st.pyplot(plt)
# Download button for the bar graph
buf = BytesIO()
ax.figure.savefig(buf, format="png")
buf.seek(0)
st.download_button(
label="Download Regression Performance Graph as PNG",
data=buf,
file_name="regression_performance_graph.png",
mime="image/png"
)
else:
st.error("The target variable must contain at least two unique values for classification or regression. Please check your dataset.")