Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import LabelEncoder | |
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor | |
from sklearn.linear_model import LogisticRegression, LinearRegression | |
from sklearn.svm import SVC, SVR | |
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor | |
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor | |
from sklearn.naive_bayes import GaussianNB | |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, mean_squared_error, mean_absolute_error, r2_score | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from io import BytesIO | |
# Streamlit app title | |
st.title("Model Training with Outlier Removal, Metrics, and Correlation Heatmap") | |
# File uploader | |
uploaded_file = st.file_uploader("Choose a CSV file", type=["csv"]) | |
if uploaded_file is not None: | |
# Read the uploaded CSV file | |
df = pd.read_csv(uploaded_file) | |
# Display the dataset | |
st.write("Dataset:") | |
st.dataframe(df) | |
# Convert categorical (str) data to numerical | |
st.write("Converting Categorical Columns to Numerical Values:") | |
label_encoder = LabelEncoder() | |
for col in df.columns: | |
if df[col].dtype == 'object' or len(df[col].unique()) <= 10: | |
st.write(f"Encoding Column: **{col}**") | |
df[col] = label_encoder.fit_transform(df[col]) | |
# Display the dataset after conversion | |
st.write("Dataset After Conversion:") | |
st.dataframe(df) | |
# Handle missing values | |
st.write("Handling Missing (Null) Values:") | |
fill_method = st.selectbox("Choose how to handle missing values", ["Drop rows", "Fill with mean/median"]) | |
if fill_method == "Drop rows": | |
df = df.dropna() | |
elif fill_method == "Fill with mean/median": | |
for col in df.columns: | |
if df[col].dtype in ['float64', 'int64']: | |
df[col].fillna(df[col].mean(), inplace=True) | |
else: | |
df[col].fillna(df[col].mode()[0], inplace=True) | |
# Remove outliers using the IQR method | |
st.write("Removing Outliers Using IQR:") | |
def remove_outliers_iqr(data, column): | |
Q1 = data[column].quantile(0.25) | |
Q3 = data[column].quantile(0.75) | |
IQR = Q3 - Q1 | |
lower_bound = Q1 - 1.5 * IQR | |
upper_bound = Q3 + 1.5 * IQR | |
return data[(data[column] >= lower_bound) & (data[column] <= upper_bound)] | |
numeric_cols = df.select_dtypes(include=['float64', 'int64']).columns | |
for col in numeric_cols: | |
original_count = len(df) | |
df = remove_outliers_iqr(df, col) | |
st.write(f"Removed outliers from **{col}**: {original_count - len(df)} rows removed.") | |
# Capping Extreme Values (based on 5% and 95% percentiles) | |
st.write("Handling Extreme Values (Capping):") | |
def cap_extreme_values(dataframe): | |
for col in dataframe.select_dtypes(include=[np.number]).columns: | |
lower_limit = dataframe[col].quantile(0.05) | |
upper_limit = dataframe[col].quantile(0.95) | |
dataframe[col] = np.clip(dataframe[col], lower_limit, upper_limit) | |
return dataframe | |
df = cap_extreme_values(df) | |
# Display dataset after cleaning | |
st.write("Dataset After Outlier Removal and Capping Extreme Values:") | |
st.dataframe(df) | |
# Add clean data download option | |
st.subheader("Download Cleaned Dataset") | |
st.download_button( | |
label="Download Cleaned Dataset (CSV)", | |
data=df.to_csv(index=False), | |
file_name="cleaned_dataset.csv", | |
mime="text/csv" | |
) | |
# Correlation Heatmap | |
st.subheader("Correlation Heatmap") | |
corr = df.corr() | |
plt.figure(figsize=(10, 8)) | |
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f", cbar=True) | |
st.pyplot(plt) | |
# Save heatmap as PNG | |
buf = BytesIO() | |
plt.savefig(buf, format="png") | |
buf.seek(0) | |
st.download_button( | |
label="Download Correlation Heatmap as PNG", | |
data=buf, | |
file_name="correlation_heatmap.png", | |
mime="image/png" | |
) | |
# Highlight highly correlated pairs | |
st.subheader("Highly Correlated Features") | |
high_corr = corr.abs().unstack().sort_values(ascending=False).drop_duplicates() | |
high_corr = high_corr[high_corr.index.get_level_values(0) != high_corr.index.get_level_values(1)] | |
high_corr_df = pd.DataFrame(high_corr, columns=["Correlation"]) | |
st.dataframe(high_corr_df) | |
# Download correlation table as CSV | |
st.download_button( | |
label="Download Correlation Table (CSV)", | |
data=high_corr_df.to_csv(index=True), | |
file_name="correlation_table.csv", | |
mime="text/csv" | |
) | |
# Select target variable | |
target = st.selectbox("Select Target Variable", df.columns) | |
features = [col for col in df.columns if col != target] | |
X = df[features] | |
y = df[target] | |
if len(y.unique()) > 1: # Ensure the target variable has at least two unique classes/values | |
if y.dtype == 'object' or len(y.unique()) <= 10: # Classification | |
st.subheader("Classification Model Training") | |
classifiers = { | |
'Logistic Regression': LogisticRegression(max_iter=2000), | |
'Decision Tree': DecisionTreeClassifier(), | |
'Random Forest': RandomForestClassifier(), | |
'Support Vector Machine (SVM)': SVC(), | |
'K-Nearest Neighbors (k-NN)': KNeighborsClassifier(), | |
'Naive Bayes': GaussianNB() | |
} | |
metrics = [] | |
train_size = st.slider("Select Training Size", min_value=0.1, max_value=0.9, value=0.8) | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=1-train_size, stratify=y, random_state=42 | |
) | |
for name, classifier in classifiers.items(): | |
classifier.fit(X_train, y_train) | |
y_pred = classifier.predict(X_test) | |
metrics.append({ | |
'Model': name, | |
'Accuracy': round(accuracy_score(y_test, y_pred), 2), | |
'Precision': round(precision_score(y_test, y_pred, zero_division=1, average='macro'), 2), | |
'Recall': round(recall_score(y_test, y_pred, zero_division=1, average='macro'), 2), | |
'F1-Score': round(f1_score(y_test, y_pred, zero_division=1, average='macro'), 2) | |
}) | |
metrics_df = pd.DataFrame(metrics) | |
st.subheader("Classification Model Performance Metrics") | |
st.dataframe(metrics_df) | |
# Save metrics as PNG (table form) | |
fig, ax = plt.subplots(figsize=(8, 4)) | |
ax.axis('tight') | |
ax.axis('off') | |
table = plt.table(cellText=metrics_df.values, colLabels=metrics_df.columns, cellLoc='center', loc='center') | |
table.auto_set_font_size(False) | |
table.set_fontsize(10) | |
table.auto_set_column_width(col=list(range(len(metrics_df.columns)))) | |
buf = BytesIO() | |
fig.savefig(buf, format="png") | |
buf.seek(0) | |
st.download_button( | |
label="Download Classification Metrics Table as PNG", | |
data=buf, | |
file_name="classification_metrics_table.png", | |
mime="image/png" | |
) | |
# Visualization (Bar Graphs for Classification) | |
st.subheader("Classification Model Performance Metrics Graph") | |
metrics_df.set_index('Model', inplace=True) | |
ax = metrics_df.plot(kind='bar', figsize=(10, 6), colormap='coolwarm', rot=45) | |
plt.title("Classification Models - Performance Metrics") | |
plt.ylabel("Scores") | |
plt.xlabel("Models") | |
st.pyplot(plt) | |
# Download button for the bar graph | |
buf = BytesIO() | |
ax.figure.savefig(buf, format="png") | |
buf.seek(0) | |
st.download_button( | |
label="Download Classification Performance Graph as PNG", | |
data=buf, | |
file_name="classification_performance_graph.png", | |
mime="image/png" | |
) | |
else: # Regression | |
st.subheader("Regression Model Training") | |
regressors = { | |
'Linear Regression': LinearRegression(), | |
'Decision Tree Regressor': DecisionTreeRegressor(), | |
'Random Forest Regressor': RandomForestRegressor(), | |
'Support Vector Regressor (SVR)': SVR(), | |
'K-Nearest Neighbors Regressor (k-NN)': KNeighborsRegressor() | |
} | |
regression_metrics = [] | |
train_size = st.slider("Select Training Size", min_value=0.1, max_value=0.9, value=0.8) | |
X_train, X_test, y_train, y_test = train_test_split( | |
X, y, test_size=1-train_size, random_state=42 | |
) | |
for name, regressor in regressors.items(): | |
regressor.fit(X_train, y_train) | |
y_pred = regressor.predict(X_test) | |
regression_metrics.append({ | |
'Model': name, | |
'Mean Squared Error (MSE)': round(mean_squared_error(y_test, y_pred), 2), | |
'Mean Absolute Error (MAE)': round(mean_absolute_error(y_test, y_pred), 2), | |
'R² Score': round(r2_score(y_test, y_pred), 2) | |
}) | |
regression_metrics_df = pd.DataFrame(regression_metrics) | |
st.subheader("Regression Model Performance Metrics") | |
st.dataframe(regression_metrics_df) | |
# Save metrics as PNG (table form) | |
fig, ax = plt.subplots(figsize=(8, 4)) | |
ax.axis('tight') | |
ax.axis('off') | |
table = plt.table(cellText=regression_metrics_df.values, colLabels=regression_metrics_df.columns, cellLoc='center', loc='center') | |
table.auto_set_font_size(False) | |
table.set_fontsize(10) | |
table.auto_set_column_width(col=list(range(len(regression_metrics_df.columns)))) | |
buf = BytesIO() | |
fig.savefig(buf, format="png") | |
buf.seek(0) | |
st.download_button( | |
label="Download Regression Metrics Table as PNG", | |
data=buf, | |
file_name="regression_metrics_table.png", | |
mime="image/png" | |
) | |
# Visualization (Bar Graphs for Regression) | |
st.subheader("Regression Model Performance Metrics Graph") | |
regression_metrics_df.set_index('Model', inplace=True) | |
ax = regression_metrics_df.plot(kind='bar', figsize=(10, 6), colormap='coolwarm', rot=45) | |
plt.title("Regression Models - Performance Metrics") | |
plt.ylabel("Scores") | |
plt.xlabel("Models") | |
st.pyplot(plt) | |
# Download button for the bar graph | |
buf = BytesIO() | |
ax.figure.savefig(buf, format="png") | |
buf.seek(0) | |
st.download_button( | |
label="Download Regression Performance Graph as PNG", | |
data=buf, | |
file_name="regression_performance_graph.png", | |
mime="image/png" | |
) | |
else: | |
st.error("The target variable must contain at least two unique values for classification or regression. Please check your dataset.") | |