Axon_OCR / app.py
Sage
added verifier
ca92e41
raw
history blame
10.7 kB
import openai
import gradio as gr
import json
import time
import logging
import requests
import sys
from azure.core.exceptions import HttpResponseError
from ocr_functions import detect_document, detect_image
from ai_functions import chat_gpt_document, chat_gpt_image
from helpers import save_json, read_logs, clear_logs, Logger
from css import css
logging.basicConfig(filename='app.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
sys.stdout = Logger("output.log")
def retry_unprocessed_documents():
global global_document_type
global global_context
global unprocessed_documents
if unprocessed_documents:
output = batch_document(unprocessed_documents, global_document_type, global_context, "None")
return output
else:
return save_json("No Unprocessed Documents", "No Unprocessed Documents"), "All Documents Processed"
def clear_unprocessed_documents():
global unprocessed_documents
unprocessed_documents = []
return "All Documents Processed"
def combine_json_files(json_files, progress=gr.Progress()):
combined_data = []
progress(0, desc="Starting")
for file in progress.tqdm(json_files, desc="Combining JSON Files"):
with open(file.name, 'r') as json_file:
data = json.load(json_file)
combined_data.extend(data)
logging.info("Combined JSON File: ", combined_data)
print("Combined JSON File: ", combined_data)
return save_json(combined_data, "Combined Json")
unprocessed_documents = []
global_document_type = None
global_context = None
def batch_document(content, document_type, context, progress = gr.Progress()):
combined_data = []
global global_document_type
global global_context
global_document_type = document_type
global_context = context
unprocessed_docs_temp = []
if progress == "None":
for x in content:
retries = 3
timeout = 3
i = 0
while True:
try:
data = json.loads(chat_gpt_document(detect_document(x),document_type,context))
combined_data.append(data)
break
except (openai.error.APIConnectionError, openai.error.AuthenticationError, openai.error.RateLimitError, HttpResponseError, requests.exceptions.RequestException) as e:
logging.error(f'Retry {i+1} failed: {e}')
print(f'Retry {i+1} failed: {e}')
if i < retries - 1:
logging.error(f'Retrying in {timeout} seconds...')
print(f'Retrying in {timeout} seconds...')
time.sleep(timeout)
i += 1
else:
unprocessed_docs_temp.append(x)
break
except Exception as e: # catch any other exceptions
logging.error(f'Unexpected error {e}')
print(f'Unexpected error {e}')
unprocessed_docs_temp.append(x)
break
else:
progress(0, desc="Starting")
for x in progress.tqdm(content, desc="Processing"):
retries = 3
timeout = 3
i = 0
while True:
try:
data = json.loads(chat_gpt_document(detect_document(x),document_type,context))
combined_data.append(data)
break
except (openai.error.APIConnectionError, openai.error.AuthenticationError, openai.error.RateLimitError, HttpResponseError, requests.exceptions.RequestException) as e:
logging.error(f'Retry {i+1} failed: {e}')
print(f'Retry {i+1} failed: {e}')
if i < retries - 1:
logging.error(f'Retrying in {timeout} seconds...')
print(f'Retrying in {timeout} seconds...')
time.sleep(timeout)
i += 1
else:
unprocessed_documents.append(x)
break
except Exception as e: # catch any other exceptions
logging.error(f'Unexpected error {e}')
print(f'Unexpected error {e}')
unprocessed_documents.append(x)
break
logging.info(combined_data)
print(combined_data)
if document_type == "":
document_type = "error"
if unprocessed_documents:
unprocessed = "\n".join([doc.name.split('\\')[-1].split('/')[-1].split('.')[0] for doc in unprocessed_documents])
logging.info(unprocessed)
print(unprocessed)
elif unprocessed_docs_temp:
unprocessed_documents.extend(unprocessed_docs_temp)
unprocessed = "\n".join([doc.name.split('\\')[-1].split('/')[-1].split('.')[0] for doc in unprocessed_documents])
logging.info(unprocessed)
print(unprocessed)
else:
unprocessed = "All Documents Processed"
return save_json(combined_data, document_type), unprocessed
def image(content, context):
retries = 3
timeout = 3
i = 0
while True:
try:
data = chat_gpt_image(detect_image(content), context)
break
except (openai.error.APIConnectionError, openai.error.AuthenticationError, openai.error.RateLimitError, HttpResponseError, requests.exceptions.RequestException) as e:
logging.error(f'Retry {i+1} failed: {e}')
print(f'Retry {i+1} failed: {e}')
if i < retries - 1:
logging.error(f'Retrying in {timeout} seconds...')
print(f'Retrying in {timeout} seconds...')
time.sleep(timeout)
i += 1
else:
break
return data
def document(content, document_type, context):
retries = 3
timeout = 3
i = 0
while True:
try:
data = chat_gpt_document(detect_document(content),document_type,context)
break
except (openai.error.APIConnectionError, openai.error.AuthenticationError, openai.error.RateLimitError, HttpResponseError, requests.exceptions.RequestException) as e:
logging.error(f'Retry {i+1} failed: {e}')
if i < retries - 1:
logging.error(f'Retrying in {timeout} seconds...')
time.sleep(timeout)
i += 1
else:
data = f"Error: {e}, Please check document configuration or document type"
break
except Exception as e: # catch any other exceptions
logging.error(f'Unexpected error {e}')
print(f'Unexpected error {e}')
data = f"Error: {e}, Please check document configuration or document type"
break
return data
with gr.Blocks(title="Axon OCR", css=css) as app:
gr.Markdown("""# Axon OCR
Attach Images or Files below and convert them to Text.""", elem_classes="markdown")
with gr.Tab("Scan Image"):
with gr.Row():
with gr.Column():
image_input = [gr.Image(type="pil"),
gr.Textbox(label="What kind of Image is this? (Optional)", placeholder="This is an image of an Official Reciept")]
image_output = gr.Textbox(label="Result")
image_button = gr.Button("Scan", variant="primary")
with gr.Tab("Scan Document"):
with gr.Row():
with gr.Column():
document_input = [gr.File(file_types=["pdf","tiff","image","text"]),
gr.Dropdown(["RPFAA Building P1", "RPFAA Building P2", "TDRP"], label="File Type", info="What type of document is this?"),
gr.Textbox(label="Any additional information? (Optional)", placeholder="This is document is an Official Reciept")]
document_output = gr.Textbox(label="Result")
document_button = gr.Button("Scan", variant="primary")
with gr.Tab("Batch Scan"):
with gr.Row():
with gr.Column():
batch_document_input = [gr.File(file_types=["pdf","tiff","image","text"], file_count="multiple"),
gr.Dropdown(["RPFAA Building P1", "RPFAA Building P2", "TDRP"], label="File Type", info="What type of document is this?"),
gr.Textbox(label="Any additional information? (Optional)", placeholder="This is document is an Official Reciept")]
with gr.Column():
batch_document_output = gr.File(label="Result")
with gr.Accordion("Unprocessed Documents", open=False):
batch_unprocessed = gr.Textbox(info="Download the file before retrying Unprocessed Documents and clear unprocessed documents after every scan to avoid overlaps", show_label=False, elem_classes="unprocessed_textbox")
clear_unprocessed_button = gr.Button("Clear Unprocessed Documents")
batch_document_button = gr.Button("Scan", variant="primary")
with gr.Row():
with gr.Column():
retry_button = gr.Button("Retry Unprocessed Documents")
with gr.Column():
stop_button = gr.Button("Stop Processing Document", variant="stop")
with gr.Tab("Combine JSON"):
with gr.Row():
with gr.Column():
json_files_input = gr.File(file_types=[".json"], file_count="multiple", label='Upload JSON files')
combined_json_output = gr.File(label="Result")
combine_button = gr.Button('Combine JSON files', variant="primary")
with gr.Accordion("Logs", open=False):
logs = gr.Textbox(max_lines=10, show_label=False, elem_classes="log_textbox")
app.load(read_logs, None, logs, every=1)
clear_button = gr.Button("Clear Logs")
clear_button.click(clear_logs)
clear_unprocessed_button.click(clear_unprocessed_documents, outputs=batch_unprocessed)
image_button.click(image, inputs=image_input, outputs=image_output)
document_button.click(document, inputs=document_input, outputs=document_output)
batch_document_event = batch_document_button.click(batch_document, inputs=batch_document_input, outputs=[batch_document_output,batch_unprocessed])
retry_button.click(retry_unprocessed_documents, outputs=[batch_document_output,batch_unprocessed])
stop_button.click(fn=None, inputs=None, outputs=None, cancels=[batch_document_event])
combine_button.click(combine_json_files, inputs=json_files_input, outputs=combined_json_output)
app.queue()
app.launch(auth=("username", "password"), favicon_path="assets/logo.png")