sagawa's picture
Update app.py
fe44309 verified
import os
import random
import numpy as np
import warnings
import pandas as pd
import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from torch.utils.data import Dataset, DataLoader
import gc
import streamlit as st
warnings.filterwarnings("ignore")
st.title('ReactionT5_task_retrosynthesis')
st.markdown('''
##### At this space, you can predict the reactants of reactions from their products.
##### The code expects input_data as a string or CSV file that contains an "input" column.
##### The format of the string or contents of the column should be smiles generated by RDKit.
##### For multiple compounds, concatenate them with ".".
##### The output contains SMILES of predicted reactants and the sum of log-likelihood for each prediction, ordered by their log-likelihood (0th is the most probable reactant).
''')
display_text = 'input the product smiles (e.g. CCN(CC)CCNC(=S)NC1CCCc2cc(C)cnc21)'
st.download_button(
label="Download demo_input.csv",
data=pd.read_csv('demo_input.csv').to_csv(index=False),
file_name='demo_input.csv',
mime='text/csv',
)
class CFG():
num_beams = st.number_input(label='num beams', min_value=1, max_value=10, value=5, step=1)
num_return_sequences = num_beams
uploaded_file = st.file_uploader("Choose a CSV file")
input_data = st.text_area(display_text)
model_name_or_path = 'sagawa/ReactionT5v2-retrosynthesis'
input_column = 'input'
input_max_length = 100
model = 't5'
seed = 42
batch_size=1
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def prepare_input(cfg, text):
inputs = tokenizer(
text,
return_tensors="pt",
max_length=cfg.input_max_length,
padding="max_length",
truncation=True,
)
dic = {"input_ids": [], "attention_mask": []}
for k, v in inputs.items():
dic[k].append(torch.tensor(v[0], dtype=torch.long))
return dic
class ProductDataset(Dataset):
def __init__(self, cfg, df):
self.cfg = cfg
self.inputs = df[cfg.input_column].values
def __len__(self):
return len(self.inputs)
def __getitem__(self, idx):
return prepare_input(self.cfg, self.inputs[idx])
def predict_single_input(input_compound):
inp = tokenizer(input_compound, return_tensors="pt").to(device)
with torch.no_grad():
output = model.generate(
**inp,
num_beams=CFG.num_beams,
num_return_sequences=CFG.num_return_sequences,
return_dict_in_generate=True,
output_scores=True,
)
return output
def decode_output(output):
sequences = [
tokenizer.decode(seq, skip_special_tokens=True).replace(" ", "").rstrip(".")
for seq in output["sequences"]
]
if CFG.num_beams > 1:
scores = output["sequences_scores"].tolist()
return sequences, scores
return sequences, None
def save_single_prediction(input_compound, output, scores):
output_data = [input_compound] + output + (scores if scores else [])
columns = (
["input"]
+ [f"{i}th" for i in range(CFG.num_beams)]
+ ([f"{i}th score" for i in range(CFG.num_beams)] if scores else [])
)
output_df = pd.DataFrame([output_data], columns=columns)
return output_df
def save_multiple_predictions(input_data, sequences, scores):
output_list = [
[input_data.loc[i // CFG.num_return_sequences, CFG.input_column]]
+ sequences[i : i + CFG.num_return_sequences]
+ scores[i : i + CFG.num_return_sequences]
for i in range(0, len(sequences), CFG.num_return_sequences)
]
columns = (
["input"]
+ [f"{i}th" for i in range(CFG.num_return_sequences)]
+ ([f"{i}th score" for i in range(CFG.num_return_sequences)] if scores else [])
)
output_df = pd.DataFrame(output_list, columns=columns)
return output_df
if st.button('predict'):
with st.spinner('Now processing. If num beams=5, this process takes about 15 seconds per reaction.'):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
seed_everything(seed=CFG.seed)
tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors="pt")
model = AutoModelForSeq2SeqLM.from_pretrained(CFG.model_name_or_path).to(device)
model.eval()
if CFG.uploaded_file is None:
input_compound = CFG.input_data
output = predict_single_input(input_compound)
sequences, scores = decode_output(output)
output_df = save_single_prediction(input_compound, sequences, scores)
else:
input_data = pd.read_csv(CFG.uploaded_file)
dataset = ProductDataset(CFG, input_data)
dataloader = DataLoader(
dataset,
batch_size=CFG.batch_size,
shuffle=False,
num_workers=4,
pin_memory=True,
drop_last=False,
)
all_sequences, all_scores = [], []
for inputs in dataloader:
inputs = {k: v[0].to(device) for k, v in inputs.items()}
with torch.no_grad():
output = model.generate(
**inputs,
num_beams=CFG.num_beams,
num_return_sequences=CFG.num_return_sequences,
return_dict_in_generate=True,
output_scores=True,
)
sequences, scores = decode_output(output)
all_sequences.extend(sequences)
if scores:
all_scores.extend(scores)
del output
torch.cuda.empty_cache()
gc.collect()
output_df = save_multiple_predictions(input_data, all_sequences, all_scores)
@st.cache
def convert_df(df):
return df.to_csv(index=False)
csv = convert_df(output_df)
st.download_button(
label="Download data as CSV",
data=csv,
file_name='output.csv',
mime='text/csv',
)