sagawa commited on
Commit
f83527e
·
1 Parent(s): 95d001b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -22,7 +22,6 @@ class CFG():
22
  num_return_sequences = 5
23
  seed = 42
24
 
25
- print('ok')
26
 
27
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
28
 
@@ -35,8 +34,8 @@ def seed_everything(seed=42):
35
  torch.backends.cudnn.deterministic = True
36
  seed_everything(seed=CFG.seed)
37
 
38
- print('ok')
39
- print(CFG.input_data)
40
  tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
41
 
42
  if CFG.model == 't5':
@@ -62,5 +61,4 @@ if type(mol) == None:
62
  output += scores
63
  output = [input_compound] + output
64
  output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
65
- print(output)
66
- print('ok')
 
22
  num_return_sequences = 5
23
  seed = 42
24
 
 
25
 
26
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
27
 
 
34
  torch.backends.cudnn.deterministic = True
35
  seed_everything(seed=CFG.seed)
36
 
37
+
38
+ st.json(CFG.input_data)
39
  tokenizer = AutoTokenizer.from_pretrained(CFG.model_name_or_path, return_tensors='pt')
40
 
41
  if CFG.model == 't5':
 
61
  output += scores
62
  output = [input_compound] + output
63
  output_df = pd.DataFrame(np.array(output).reshape(1, -1), columns=['input'] + [f'{i}th' for i in range(CFG.num_beams)] + ['valid compound'] + [f'{i}th score' for i in range(CFG.num_beams)] + ['valid compound score'])
64
+ st.json(output)