Spaces:
Running
Running
import argparse | |
import os | |
import sys | |
import warnings | |
from pathlib import Path | |
import datasets | |
import pandas as pd | |
import torch | |
from datasets import Dataset, DatasetDict | |
from transformers import ( | |
AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
DataCollatorForSeq2Seq, | |
EarlyStoppingCallback, | |
Seq2SeqTrainer, | |
Seq2SeqTrainingArguments, | |
) | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) | |
from utils import ( | |
add_new_tokens, | |
canonicalize, | |
filter_out, | |
get_accuracy_score, | |
preprocess_dataset, | |
seed_everything, | |
space_clean, | |
) | |
# Suppress warnings and disable progress bars | |
warnings.filterwarnings("ignore") | |
datasets.utils.logging.disable_progress_bar() | |
def parse_args(): | |
"""Parse command line arguments.""" | |
parser = argparse.ArgumentParser( | |
description="Training script for reaction prediction model." | |
) | |
parser.add_argument( | |
"--train_data_path", type=str, required=True, help="Path to training data CSV." | |
) | |
parser.add_argument( | |
"--valid_data_path", | |
type=str, | |
required=True, | |
help="Path to validation data CSV.", | |
) | |
parser.add_argument("--test_data_path", type=str, help="Path to test data CSV.") | |
parser.add_argument( | |
"--USPTO_test_data_path", | |
type=str, | |
help="The path to data used for USPTO testing. CSV file that contains ['REACTANT', 'REAGENT', 'PRODUCT'] columns is expected.", | |
) | |
parser.add_argument( | |
"--output_dir", type=str, default="t5", help="Path of the output directory." | |
) | |
parser.add_argument( | |
"--pretrained_model_name_or_path", | |
type=str, | |
required=True, | |
help="Pretrained model path or name.", | |
) | |
parser.add_argument( | |
"--debug", action="store_true", default=False, help="Enable debug mode." | |
) | |
parser.add_argument( | |
"--epochs", | |
type=int, | |
default=5, | |
help="Number of epochs.", | |
) | |
parser.add_argument("--lr", type=float, default=1e-3, help="Learning rate.") | |
parser.add_argument("--batch_size", type=int, default=16, help="Batch size.") | |
parser.add_argument( | |
"--input_max_length", | |
type=int, | |
default=400, | |
help="Max input token length.", | |
) | |
parser.add_argument( | |
"--target_max_length", | |
type=int, | |
default=150, | |
help="Max target token length.", | |
) | |
parser.add_argument( | |
"--eval_beams", | |
type=int, | |
default=5, | |
help="Number of beams used for beam search during evaluation.", | |
) | |
parser.add_argument( | |
"--target_column", | |
type=str, | |
default="PRODUCT", | |
help="Target column name.", | |
) | |
parser.add_argument( | |
"--weight_decay", | |
type=float, | |
default=0.01, | |
help="Weight decay.", | |
) | |
parser.add_argument( | |
"--evaluation_strategy", | |
type=str, | |
default="epoch", | |
help="Evaluation strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --eval_steps.", | |
) | |
parser.add_argument( | |
"--eval_steps", | |
type=int, | |
help="Evaluation steps.", | |
) | |
parser.add_argument( | |
"--save_strategy", | |
type=str, | |
default="epoch", | |
help="Save strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --save_steps.", | |
) | |
parser.add_argument( | |
"--save_steps", | |
type=int, | |
default=500, | |
help="Save steps.", | |
) | |
parser.add_argument( | |
"--logging_strategy", | |
type=str, | |
default="epoch", | |
help="Logging strategy used during training. Select from 'no', 'steps', or 'epoch'. If you select 'steps', also give --logging_steps.", | |
) | |
parser.add_argument( | |
"--logging_steps", | |
type=int, | |
default=500, | |
help="Logging steps.", | |
) | |
parser.add_argument( | |
"--save_total_limit", | |
type=int, | |
default=2, | |
help="Limit of saved checkpoints.", | |
) | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
default=False, | |
help="Enable fp16 training.", | |
) | |
parser.add_argument( | |
"--disable_tqdm", | |
action="store_true", | |
default=False, | |
help="Disable tqdm.", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=42, | |
help="Random seed.", | |
) | |
return parser.parse_args() | |
def preprocess_df(df, drop_duplicates=True): | |
"""Preprocess the dataframe by filling NaNs, dropping duplicates, and formatting the input.""" | |
for col in ["REACTANT", "PRODUCT", "CATALYST", "REAGENT", "SOLVENT"]: | |
if col not in df.columns: | |
df[col] = None | |
df[col] = df[col].fillna(" ") | |
if drop_duplicates: | |
df = ( | |
df[["REACTANT", "PRODUCT", "CATALYST", "REAGENT", "SOLVENT"]] | |
.drop_duplicates() | |
.reset_index(drop=True) | |
) | |
df["REAGENT"] = df["CATALYST"] + "." + df["REAGENT"] + "." + df["SOLVENT"] | |
df["REAGENT"] = df["REAGENT"].apply(lambda x: space_clean(x)) | |
df["REAGENT"] = df["REAGENT"].apply(lambda x: canonicalize(x) if x != " " else " ") | |
df["input"] = "REACTANT:" + df["REACTANT"] + "REAGENT:" + df["REAGENT"] | |
return df | |
def preprocess_USPTO(df): | |
df["REACTANT"] = df["REACTANT"].apply(lambda x: str(sorted(x.split(".")))) | |
df["REAGENT"] = df["REAGENT"].apply(lambda x: str(sorted(x.split(".")))) | |
df["PRODUCT"] = df["PRODUCT"].apply(lambda x: str(sorted(x.split(".")))) | |
df["input"] = "REACTANT:" + df["REACTANT"] + "REAGENT:" + df["REAGENT"] | |
df["pair"] = df["input"] + " - " + df["PRODUCT"].astype(str) | |
return df | |
if __name__ == "__main__": | |
CFG = parse_args() | |
CFG.disable_tqdm = True | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
seed_everything(seed=CFG.seed) | |
# Load and preprocess data | |
train = preprocess_df( | |
filter_out(pd.read_csv(CFG.train_data_path), ["REACTANT", "PRODUCT"]) | |
) | |
valid = preprocess_df( | |
filter_out(pd.read_csv(CFG.valid_data_path), ["REACTANT", "PRODUCT"]) | |
) | |
if CFG.USPTO_test_data_path: | |
train_copy = preprocess_USPTO(train.copy()) | |
USPTO_test = preprocess_USPTO(pd.read_csv(CFG.USPTO_test_data_path)) | |
train = train[~train_copy["pair"].isin(USPTO_test["pair"])].reset_index( | |
drop=True | |
) | |
train["pair"] = train["input"] + " - " + train["PRODUCT"] | |
valid["pair"] = valid["input"] + " - " + valid["PRODUCT"] | |
valid = valid[~valid["pair"].isin(train["pair"])].reset_index(drop=True) | |
train.to_csv("train.csv", index=False) | |
valid.to_csv("valid.csv", index=False) | |
if CFG.test_data_path: | |
test = preprocess_df( | |
filter_out(pd.read_csv(CFG.test_data_path), ["REACTANT", "PRODUCT"]) | |
) | |
test["pair"] = test["input"] + " - " + test["PRODUCT"] | |
test = test[~test["pair"].isin(train["pair"])].reset_index(drop=True) | |
test = test.drop_duplicates(subset=["pair"]).reset_index(drop=True) | |
test.to_csv("test.csv", index=False) | |
dataset = DatasetDict( | |
{ | |
"train": Dataset.from_pandas(train[["input", "PRODUCT"]]), | |
"validation": Dataset.from_pandas(valid[["input", "PRODUCT"]]), | |
} | |
) | |
# load tokenizer | |
tokenizer = AutoTokenizer.from_pretrained( | |
os.path.abspath(CFG.pretrained_model_name_or_path) | |
if os.path.exists(CFG.pretrained_model_name_or_path) | |
else CFG.pretrained_model_name_or_path, | |
return_tensors="pt", | |
) | |
tokenizer = add_new_tokens( | |
tokenizer, | |
Path(__file__).resolve().parent.parent / "data" / "additional_tokens.txt", | |
) | |
tokenizer.add_special_tokens( | |
{ | |
"additional_special_tokens": tokenizer.additional_special_tokens | |
+ ["REACTANT:", "REAGENT:"] | |
} | |
) | |
CFG.tokenizer = tokenizer | |
# load model | |
model = AutoModelForSeq2SeqLM.from_pretrained( | |
os.path.abspath(CFG.pretrained_model_name_or_path) if os.path.exists(CFG.pretrained_model_name_or_path) else CFG.pretrained_model_name_or_path | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
tokenized_datasets = dataset.map( | |
lambda examples: preprocess_dataset(examples, CFG), | |
batched=True, | |
remove_columns=dataset["train"].column_names, | |
load_from_cache_file=False, | |
) | |
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model) | |
args = Seq2SeqTrainingArguments( | |
CFG.output_dir, | |
evaluation_strategy=CFG.evaluation_strategy, | |
eval_steps=CFG.eval_steps, | |
save_strategy=CFG.save_strategy, | |
save_steps=CFG.save_steps, | |
logging_strategy=CFG.logging_strategy, | |
logging_steps=CFG.logging_steps, | |
learning_rate=CFG.lr, | |
per_device_train_batch_size=CFG.batch_size, | |
per_device_eval_batch_size=CFG.batch_size, | |
weight_decay=CFG.weight_decay, | |
save_total_limit=CFG.save_total_limit, | |
num_train_epochs=CFG.epochs, | |
predict_with_generate=True, | |
fp16=CFG.fp16, | |
disable_tqdm=CFG.disable_tqdm, | |
push_to_hub=False, | |
load_best_model_at_end=True, | |
) | |
model.config.eval_beams = CFG.eval_beams | |
model.config.max_length = CFG.target_max_length | |
trainer = Seq2SeqTrainer( | |
model, | |
args, | |
train_dataset=tokenized_datasets["train"], | |
eval_dataset=tokenized_datasets["validation"], | |
data_collator=data_collator, | |
tokenizer=tokenizer, | |
compute_metrics=lambda eval_preds: get_accuracy_score(eval_preds, CFG), | |
callbacks=[EarlyStoppingCallback(early_stopping_patience=10)], | |
) | |
try: | |
trainer.train(resume_from_checkpoint=True) | |
except: | |
trainer.train(resume_from_checkpoint=None) | |
trainer.save_model("./best_model") | |