Spaces:
Running
Running
# https://github.com/huggingface/transformers/blob/main/examples/flax/language-modeling/t5_tokenizer_model.py | |
import argparse | |
import json | |
import os | |
import sys | |
from typing import Iterator, List, Union | |
import datasets | |
from datasets import load_dataset | |
from tokenizers import ( | |
AddedToken, | |
Regex, | |
Tokenizer, | |
decoders, | |
normalizers, | |
pre_tokenizers, | |
trainers, | |
) | |
from tokenizers.implementations.base_tokenizer import BaseTokenizer | |
from tokenizers.models import Unigram | |
from tokenizers.processors import TemplateProcessing | |
from transformers import AutoTokenizer, T5Config | |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) | |
from utils import seed_everything | |
seed_everything(seed=42) | |
script_dir = os.path.abspath(os.path.dirname(__file__)) | |
project_root = os.path.abspath(os.path.join(script_dir, "..")) | |
data_dir = os.path.join(project_root, "data") | |
class SentencePieceUnigramTokenizer(BaseTokenizer): | |
""" | |
This class is a copy of `DeDLOC's tokenizer implementation <https://github.com/yandex-research/DeDLOC/blob/main/sahajbert/tokenizer/tokenizer_model.py>`__ . | |
Custom SentencePiece Unigram Tokenizer with NMT, NKFC, spaces and lower-casing characters normalization | |
Represents the Unigram algorithm, with the pretokenization used by SentencePiece | |
""" | |
def __init__( | |
self, | |
replacement: str = "▁", | |
add_prefix_space: bool = True, | |
unk_token: Union[str, AddedToken] = "<unk>", | |
eos_token: Union[str, AddedToken] = "</s>", | |
pad_token: Union[str, AddedToken] = "<pad>", | |
): | |
self.special_tokens = { | |
"pad": {"id": 0, "token": pad_token}, | |
"eos": {"id": 1, "token": eos_token}, | |
"unk": {"id": 2, "token": unk_token}, | |
} | |
self.special_tokens_list = [None] * len(self.special_tokens) | |
for token_dict in self.special_tokens.values(): | |
self.special_tokens_list[token_dict["id"]] = token_dict["token"] | |
tokenizer = Tokenizer(Unigram()) | |
tokenizer.normalizer = normalizers.Sequence( | |
[ | |
normalizers.Nmt(), | |
normalizers.NFKC(), | |
normalizers.Replace(Regex(" {2,}"), " "), | |
# normalizers.Lowercase(), | |
] | |
) | |
tokenizer.pre_tokenizer = pre_tokenizers.Sequence( | |
[ | |
pre_tokenizers.Metaspace( | |
replacement=replacement, add_prefix_space=add_prefix_space | |
), | |
pre_tokenizers.Digits(individual_digits=True), | |
pre_tokenizers.Punctuation(), | |
] | |
) | |
tokenizer.decoder = decoders.Metaspace( | |
replacement=replacement, add_prefix_space=add_prefix_space | |
) | |
tokenizer.post_processor = TemplateProcessing( | |
single=f"$A {self.special_tokens['eos']['token']}", | |
special_tokens=[ | |
(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"]) | |
], | |
) | |
parameters = { | |
"model": "SentencePieceUnigram", | |
"replacement": replacement, | |
"add_prefix_space": add_prefix_space, | |
} | |
super().__init__(tokenizer, parameters) | |
def train( | |
self, | |
files: Union[str, List[str]], | |
vocab_size: int = 8000, | |
show_progress: bool = True, | |
): | |
"""Train the model using the given files""" | |
trainer = trainers.UnigramTrainer( | |
vocab_size=vocab_size, | |
special_tokens=self.special_tokens_list, | |
show_progress=show_progress, | |
) | |
if isinstance(files, str): | |
files = [files] | |
self._tokenizer.train(files, trainer=trainer) | |
self.add_unk_id() | |
def train_from_iterator( | |
self, | |
iterator: Union[Iterator[str], Iterator[Iterator[str]]], | |
vocab_size: int = 8000, | |
show_progress: bool = True, | |
): | |
"""Train the model using the given iterator""" | |
trainer = trainers.UnigramTrainer( | |
vocab_size=vocab_size, | |
special_tokens=self.special_tokens_list, | |
show_progress=show_progress, | |
) | |
self._tokenizer.train_from_iterator(iterator, trainer=trainer) | |
self.add_unk_id() | |
def add_unk_id(self): | |
tokenizer_json = json.loads(self._tokenizer.to_str()) | |
tokenizer_json["model"]["unk_id"] = self.special_tokens["unk"]["id"] | |
self._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json)) | |
def create_normal_tokenizer(dataset, model_name): | |
if isinstance(dataset, datasets.dataset_dict.DatasetDict): | |
training_corpus = ( | |
dataset["train"][i : i + 1000]["smiles"] | |
for i in range(0, len(dataset), 1000) | |
) | |
else: | |
training_corpus = ( | |
dataset[i : i + 1000]["smiles"] for i in range(0, len(dataset), 1000) | |
) | |
if "deberta" in model_name: | |
# Train tokenizer | |
old_tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer = old_tokenizer.train_new_from_iterator(training_corpus, 1000) | |
elif "t5" in model_name: | |
tokenizer = SentencePieceUnigramTokenizer( | |
unk_token="<unk>", eos_token="</s>", pad_token="<pad>" | |
) | |
tokenizer.train_from_iterator(training_corpus, 1000) | |
return tokenizer | |
def create_character_level_tokenizer(dataset, model_name): | |
df = dataset["train"].to_pandas() | |
df["smiles"] = [" ".join(list(i)) for i in df["smiles"]] | |
dataset = datasets.Dataset.from_pandas(df) | |
tokenizer = create_normal_tokenizer(dataset, model_name) | |
return tokenizer | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--use_character_level_tokenizer", | |
action="store_true", | |
default=False, | |
required=False, | |
) | |
return parser.parse_args() | |
CFG = parse_args() | |
# Initialize a dataset | |
dataset = load_dataset( | |
"csv", data_files=os.path.join(data_dir, "ZINC-canonicalized.csv") | |
) | |
if CFG.use_character_level_tokenizer: | |
tokenizer = create_character_level_tokenizer(dataset, "t5") | |
else: | |
tokenizer = create_normal_tokenizer(dataset, "t5") | |
# Save files to disk | |
tokenizer.save(os.path.join(script_dir, "CompoundT5/CompoundT5-config/tokenizer.json")) | |
config = T5Config.from_pretrained( | |
"google/t5-v1_1-base", vocab_size=tokenizer.get_vocab_size() | |
) | |
config.save_pretrained(os.path.join(script_dir, "CompoundT5/CompoundT5-config/")) | |