PLTNUM / app.py
sagawa's picture
Update app.py
10c3e22 verified
raw
history blame
6.14 kB
import gradio as gr
import sys
import random
import os
import pandas as pd
import torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
del datasets
sys.path.append("/home/user/app/scripts")
from foldseek_util import get_struc_seq
from utils import seed_everything
from models import PLTNUM_PreTrainedModel
from datasets import PLTNUMDataset
class Config:
batch_size = 2
use_amp = False
num_workers = 1
max_length = 512
used_sequence = "left"
padding_side = "right"
task = "classification"
sequence_col = "sequence"
# Assuming 'predict_stability' is your function that predicts protein stability
def predict_stability(cfg, model_choice, organism_choice, pdb_file=None, sequence=None):
# Check if pdb_file is provided
if pdb_file:
pdb_path = pdb_file.name # Get the path of the uploaded PDB file
os.system("chmod 777 bin/foldseek")
sequences = get_foldseek_seq(pdb_path)
if not sequences:
return "Failed to extract sequence from the PDB file."
if model_choice == "SaProt":
sequence = sequences[2]
else:
sequence = sequences[0]
if organism_choice == "Human":
cell_line = "HeLa"
else:
cell_line = "NIH3T3"
# If sequence is provided directly
if sequence:
cfg.model = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
cfg.architecture = model_choice
cfg.model_path = f"sagawa/PLTNUM-{model_choice}-{cell_line}"
output = predict(cfg, sequence)
return f"Predicted Stability using {model_choice} for {organism_choice}: Example Output with sequence {output}..."
else:
return "No valid input provided."
def get_foldseek_seq(pdb_path):
parsed_seqs = get_struc_seq(
"bin/foldseek",
pdb_path,
["A"],
process_id=random.randint(0, 10000000),
)["A"]
return parsed_seqs
def predict(cfg, sequence):
cfg.token_length = 2 if cfg.architecture == "SaProt" else 1
cfg.device = "cuda" if torch.cuda.is_available() else "cpu"
if cfg.used_sequence == "both":
cfg.max_length += 1
seed_everything(cfg.seed)
df = pd.DataFrame({cfg.sequence_col: [sequence]})
tokenizer = AutoTokenizer.from_pretrained(
cfg.model_path, padding_side=cfg.padding_side
)
cfg.tokenizer = tokenizer
dataset = PLTNUMDataset(cfg, df, train=False)
dataloader = DataLoader(
dataset,
batch_size=cfg.batch_size,
shuffle=False,
num_workers=cfg.num_workers,
pin_memory=True,
drop_last=False,
)
model = PLTNUM_PreTrainedModel.from_pretrained(cfg.model_path, cfg=cfg)
model.to(cfg.device)
# predictions = predict_fn(loader, model, cfg)
model.eval()
predictions = []
for inputs, _ in dataloader:
inputs = inputs.to(cfg.device)
with torch.no_grad():
with torch.amp.autocast(enabled=cfg.use_amp):
preds = (
torch.sigmoid(model(inputs))
if cfg.task == "classification"
else model(inputs)
)
predictions += preds.cpu().tolist()
outputs = {}
outputs["raw prediction values"] = predictions
outputs["binary prediction values"] = [1 if x > 0.5 else 0 for x in predictions]
return outputs
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown(
"""
# PLTNUM: Protein LifeTime Neural Model
**Predict the protein half-life from its sequence or PDB file.**
"""
)
gr.Image(
"https://github.com/sagawatatsuya/PLTNUM/blob/main/model-image.png?raw=true",
label="Model Image",
)
# Model and Organism selection in the same row to avoid layout issues
with gr.Row():
model_choice = gr.Radio(
choices=["SaProt", "ESM2"],
label="Select PLTNUM's base model.",
value="SaProt",
)
organism_choice = gr.Radio(
choices=["Mouse", "Human"],
label="Select the target organism.",
value="Mouse",
)
with gr.Tabs():
with gr.TabItem("Upload PDB File"):
gr.Markdown("### Upload your PDB file:")
pdb_file = gr.File(label="Upload PDB File")
predict_button = gr.Button("Predict Stability")
prediction_output = gr.Textbox(
label="Stability Prediction", interactive=False
)
predict_button.click(
fn=predict_stability,
inputs=[model_choice, organism_choice, pdb_file],
outputs=prediction_output,
)
with gr.TabItem("Enter Protein Sequence"):
gr.Markdown("### Enter the protein sequence:")
sequence = gr.Textbox(
label="Protein Sequence",
placeholder="Enter your protein sequence here...",
lines=8,
)
predict_button = gr.Button("Predict Stability")
prediction_output = gr.Textbox(
label="Stability Prediction", interactive=False
)
predict_button.click(
fn=predict_stability,
inputs=[model_choice, organism_choice, sequence],
outputs=prediction_output,
)
gr.Markdown(
"""
### How to Use:
- **Select Model**: Choose between 'SaProt' or 'ESM2' for your prediction.
- **Select Organism**: Choose between 'Mouse' or 'Human'.
- **Upload PDB File**: Choose the 'Upload PDB File' tab and upload your file.
- **Enter Sequence**: Alternatively, switch to the 'Enter Protein Sequence' tab and input your sequence.
- **Predict**: Click 'Predict Stability' to receive the prediction.
"""
)
gr.Markdown(
"""
### About the Tool
This tool allows researchers and scientists to predict the stability of proteins using advanced algorithms. It supports both PDB file uploads and direct sequence input.
"""
)
demo.launch()