Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
from PIL import Image | |
import torch.nn.functional as F | |
from torchvision import transforms as tfms | |
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler # Import DPMSolver | |
# 1. Device and dtype: Correctly determine device and dtype. Use float16 if CUDA is available. | |
torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32 | |
print(f"Using device: {torch_device}, dtype: {torch_dtype}") # Helpful for debugging | |
# 2. Model Path and Loading: Use a more efficient scheduler and reduce memory usage. | |
model_path = "CompVis/stable-diffusion-v1-4" | |
# Use DPMSolverMultistepScheduler for faster and higher-quality sampling | |
scheduler = DPMSolverMultistepScheduler.from_pretrained(model_path, subfolder="scheduler") | |
sd_pipeline = DiffusionPipeline.from_pretrained( | |
model_path, | |
torch_dtype=torch_dtype, | |
scheduler=scheduler, # Use the DPM scheduler | |
# low_cpu_mem_usage is deprecated, but still helpful on CPU. | |
low_cpu_mem_usage=True if torch_device == "cpu" else False, | |
# Use attention slicing to reduce VRAM usage during inference. | |
# This has a small performance cost but significantly lowers memory. | |
safety_checker=None, #Removing the safety checker to avoid false positives blocking image generation | |
requires_safety_checker=False | |
).to(torch_device) | |
# Optimize attention for memory efficiency (if using CUDA) | |
if torch_device == "cuda": | |
sd_pipeline.enable_xformers_memory_efficient_attention() # Use xformers if installed! | |
# OR, if xformers is not available: | |
# sd_pipeline.enable_attention_slicing() # Use attention slicing (less effective, but built-in) | |
# 3. Textual Inversion Loading: Load *only* the necessary concepts. Load them one by one. | |
# This is *much* more memory efficient than loading all at once. | |
style_token_dict = { | |
"Illustration Style": '<illustration-style>', | |
"Line Art": '<line-art>', | |
"Hitokomoru Style": '<hitokomoru-style-nao>', | |
"Marc Allante": '<Marc_Allante>', | |
"Midjourney": '<midjourney-style>', | |
"Hanfu Anime": '<hanfu-anime-style>', | |
"Birb Style": '<birb-style>' | |
} | |
# Load inversions individually. This is crucial for managing memory. | |
def load_inversion(concept_name, token): | |
try: | |
sd_pipeline.load_textual_inversion(f"sd-concepts-library/{concept_name}", token=token) | |
print(f"Loaded textual inversion: {concept_name}") | |
except Exception as e: | |
print(f"Error loading {concept_name}: {e}") | |
# Load each style individually. | |
load_inversion("illustration-style", style_token_dict["Illustration Style"]) | |
load_inversion("line-art", style_token_dict["Line Art"]) | |
load_inversion("hitokomoru-style-nao", style_token_dict["Hitokomoru Style"]) | |
load_inversion("style-of-marc-allante", style_token_dict["Marc Allante"]) | |
load_inversion("midjourney-style", style_token_dict["Midjourney"]) | |
load_inversion("hanfu-anime-style", style_token_dict["Hanfu Anime"]) | |
load_inversion("birb-style", style_token_dict["Birb Style"]) | |
# 4. Guidance Function: Optimized for speed and clarity. | |
def apply_guidance(image, guidance_method, loss_scale): | |
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device) | |
loss_scale = loss_scale / 10000.0 # Pre-calculate for efficiency | |
if guidance_method == 'Grayscale': | |
gray = tfms.Grayscale(num_output_channels=3)(img_tensor) # keep 3 channels | |
guided = img_tensor + (gray - img_tensor) * loss_scale | |
elif guidance_method == 'Bright': | |
guided = torch.clamp(img_tensor * (1 + loss_scale), 0, 1) # Direct brightness adjustment | |
elif guidance_method == 'Contrast': | |
mean = img_tensor.mean() | |
guided = torch.clamp((img_tensor - mean) * (1 + loss_scale) + mean, 0, 1) # Contrast adjustment | |
elif guidance_method == 'Symmetry': | |
flipped = torch.flip(img_tensor, [3]) | |
guided = img_tensor + (flipped - img_tensor) * loss_scale | |
elif guidance_method == 'Saturation': | |
# Use torchvision's functional approach for efficiency. | |
guided = tfms.functional.adjust_saturation(img_tensor, 1 + loss_scale) | |
guided = torch.clamp(guided, 0, 1) | |
else: | |
return image | |
# Convert back to PIL Image (optimized for conciseness) | |
guided = tfms.ToPILImage()(guided.squeeze(0).cpu()) | |
return guided | |
# 5. Inference Function: Use the pipeline efficiently. | |
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size): | |
prompt = f"{text} {style_token_dict[style]}" | |
width, height = map(int, image_size.split('x')) | |
generator = torch.Generator(device=torch_device).manual_seed(seed) | |
# Generate image (more concise) | |
image_pipeline = sd_pipeline( | |
prompt, | |
num_inference_steps=inference_step, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
height=height, | |
width=width, | |
).images[0] | |
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale) | |
return image_pipeline, image_guide | |
# 6. Gradio Interface (CSS and HTML remain largely the same, but I've included minor improvements) | |
css_and_html = """ | |
<style> | |
/* Your CSS here - mostly unchanged, but I've added a few tweaks */ | |
body { | |
background: linear-gradient(135deg, #1a1c2c, #4a4e69, #9a8c98); | |
font-family: 'Arial', sans-serif; | |
color: #f2e9e4; | |
margin: 0; | |
padding: 0; | |
min-height: 100vh; | |
} | |
/* ... (Rest of your CSS) ... */ | |
.gr-box { | |
background-color: rgba(255, 255, 255, 0.1) !important; | |
border: 1px solid rgba(255, 255, 255, 0.2) !important; | |
border-radius: 0.5em !important; /* Add border-radius */ | |
} | |
.gr-input, .gr-button, .gr-dropdown, .gr-slider { | |
background-color: rgba(255, 255, 255, 0.1) !important; | |
color: #f2e9e4 !important; | |
border: 1px solid rgba(255, 255, 255, 0.2) !important; | |
border-radius: 0.5em !important; /* Add border-radius */ | |
} | |
/* ... (Rest of your CSS) ... */ | |
</style> | |
<div id="app-header"> | |
<div class="artifact large"></div> | |
<div class="artifact medium"></div> | |
<div class="artifact small"></div> | |
<h1>Dreamscape Creator</h1> | |
<p>Unleash your imagination with AI-powered generative art</p> | |
<div class="concept-container"> | |
<div class="concept"><div class="concept-emoji">π¨</div><div class="concept-description">Illustration Style</div></div> | |
<div class="concept"><div class="concept-emoji">βοΈ</div><div class="concept-description">Line Art</div></div> | |
<div class="concept"><div class="concept-emoji">π</div><div class="concept-description">Midjourney Style</div></div> | |
<div class="concept"><div class="concept-emoji">π</div><div class="concept-description">Hanfu Anime</div></div> | |
</div> | |
</div> | |
""" | |
with gr.Blocks(css=css_and_html) as demo: | |
gr.HTML(css_and_html) | |
with gr.Row(): | |
text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...") | |
style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style") | |
with gr.Row(): | |
inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps") | |
guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale") | |
seed = gr.Slider(0, 10000, 42, step=1, label="Seed", randomize=True) # Add randomize | |
with gr.Row(): | |
guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale") | |
loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale") | |
with gr.Row(): | |
image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256") | |
with gr.Row(): | |
generate_button = gr.Button("Create Dreamscape", variant="primary") | |
with gr.Row(): | |
output_image = gr.Image(label="Your Dreamscape", interactive=False) # Disable interaction | |
output_image_guided = gr.Image(label="Guided Dreamscape", interactive=False) # Disable interaction | |
generate_button.click( | |
inference, | |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size], | |
outputs=[output_image, output_image_guided] | |
) | |
gr.Examples( | |
examples=[ | |
["Magical Forest with Glowing Trees", 'Birb Style', 40, 7.5, 42, 'Grayscale', 200, "256x256"], | |
["Ancient Temple Ruins at Sunset", 'Midjourney', 30, 8.0, 123, 'Bright', 5678, "256x256"], | |
["Japanese garden with cherry blossoms", 'Hitokomoru Style', 40, 7.0, 789, 'Contrast', 250, "256x256"], | |
], | |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size], | |
outputs=[output_image, output_image_guided], | |
fn=inference, | |
# cache_examples=True, # Caching can be problematic on Spaces, especially with limited RAM. Disable if needed. | |
cache_examples=False, | |
examples_per_page=5 | |
) | |
if __name__ == "__main__": | |
demo.launch() |