|
import os |
|
import torch |
|
import gradio as gr |
|
from PIL import Image |
|
import torch.nn.functional as F |
|
from torchvision import transforms as tfms |
|
from diffusers import DiffusionPipeline |
|
|
|
|
|
|
|
torch_device = "cuda" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32 |
|
|
|
|
|
model_path = "CompVis/stable-diffusion-v1-4" |
|
sd_pipeline = DiffusionPipeline.from_pretrained( |
|
model_path, |
|
torch_dtype=torch_dtype, |
|
low_cpu_mem_usage=True if torch_device == "cpu" else False |
|
).to(torch_device) |
|
|
|
|
|
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style") |
|
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art") |
|
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao") |
|
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante") |
|
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style") |
|
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style") |
|
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style") |
|
|
|
|
|
style_token_dict = { |
|
"Illustration Style": '<illustration-style>', |
|
"Line Art": '<line-art>', |
|
"Hitokomoru Style": '<hitokomoru-style-nao>', |
|
"Marc Allante": '<Marc_Allante>', |
|
"Midjourney": '<midjourney-style>', |
|
"Hanfu Anime": '<hanfu-anime-style>', |
|
"Birb Style": '<birb-style>' |
|
} |
|
|
|
def apply_guidance(image, guidance_method, loss_scale): |
|
|
|
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device) |
|
|
|
if guidance_method == 'Grayscale': |
|
gray = tfms.Grayscale(3)(img_tensor) |
|
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000) |
|
elif guidance_method == 'Bright': |
|
bright = F.relu(img_tensor) |
|
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000) |
|
elif guidance_method == 'Contrast': |
|
mean = img_tensor.mean() |
|
contrast = (img_tensor - mean) * 2 + mean |
|
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000) |
|
elif guidance_method == 'Symmetry': |
|
flipped = torch.flip(img_tensor, [3]) |
|
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000) |
|
elif guidance_method == 'Saturation': |
|
saturated = tfms.functional.adjust_saturation(img_tensor, 2) |
|
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000) |
|
else: |
|
return image |
|
|
|
|
|
guided = guided.squeeze(0).clamp(0, 1) |
|
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy() |
|
return Image.fromarray(guided) |
|
|
|
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size): |
|
prompt = text + " " + style_token_dict[style] |
|
|
|
|
|
size = tuple(map(int, image_size.split('x'))) |
|
|
|
|
|
image_pipeline = sd_pipeline( |
|
prompt, |
|
num_inference_steps=inference_step, |
|
guidance_scale=guidance_scale, |
|
generator=torch.Generator(device=torch_device).manual_seed(seed), |
|
height=size[1], |
|
width=size[0] |
|
).images[0] |
|
|
|
|
|
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale) |
|
|
|
return image_pipeline, image_guide |
|
|
|
|
|
|
|
css_and_html = """ |
|
<style> |
|
body { |
|
background: linear-gradient(135deg, #1a1c2c, #4a4e69, #9a8c98); |
|
font-family: 'Arial', sans-serif; |
|
color: #f2e9e4; |
|
margin: 0; |
|
padding: 0; |
|
min-height: 100vh; |
|
} |
|
#app-header { |
|
text-align: center; |
|
background: rgba(255, 255, 255, 0.1); |
|
padding: 30px; |
|
border-radius: 20px; |
|
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.3); |
|
position: relative; |
|
overflow: hidden; |
|
margin: 20px auto; |
|
max-width: 800px; |
|
} |
|
#app-header::before { |
|
content: ""; |
|
position: absolute; |
|
top: -50%; |
|
left: -50%; |
|
width: 200%; |
|
height: 200%; |
|
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%); |
|
animation: shimmer 15s infinite linear; |
|
} |
|
@keyframes shimmer { |
|
0% { transform: rotate(0deg); } |
|
100% { transform: rotate(360deg); } |
|
} |
|
#app-header h1 { |
|
color: #f2e9e4; |
|
font-size: 2.5em; |
|
margin-bottom: 15px; |
|
text-shadow: 2px 2px 4px rgba(0,0,0,0.5); |
|
} |
|
#app-header p { |
|
font-size: 1.2em; |
|
color: #c9ada7; |
|
} |
|
.concept-container { |
|
display: flex; |
|
justify-content: center; |
|
gap: 20px; |
|
margin-top: 30px; |
|
flex-wrap: wrap; |
|
} |
|
.concept { |
|
position: relative; |
|
transition: transform 0.3s, box-shadow 0.3s; |
|
border-radius: 15px; |
|
overflow: hidden; |
|
background: rgba(255, 255, 255, 0.1); |
|
box-shadow: 0 5px 15px rgba(0,0,0,0.2); |
|
width: 150px; |
|
} |
|
.concept:hover { |
|
transform: translateY(-10px) rotate(3deg); |
|
box-shadow: 0 15px 30px rgba(0,0,0,0.4); |
|
} |
|
.concept img { |
|
width: 100%; |
|
height: 120px; |
|
object-fit: cover; |
|
} |
|
.concept-description { |
|
background-color: rgba(110, 72, 170, 0.8); |
|
color: white; |
|
padding: 10px; |
|
font-size: 0.9em; |
|
text-align: center; |
|
} |
|
.artifact { |
|
position: absolute; |
|
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%); |
|
border-radius: 50%; |
|
opacity: 0.5; |
|
pointer-events: none; |
|
} |
|
.artifact.large { |
|
width: 400px; |
|
height: 400px; |
|
top: -100px; |
|
left: -200px; |
|
animation: float 20s infinite ease-in-out; |
|
} |
|
.artifact.medium { |
|
width: 300px; |
|
height: 300px; |
|
bottom: -150px; |
|
right: -150px; |
|
animation: float 15s infinite ease-in-out reverse; |
|
} |
|
.artifact.small { |
|
width: 150px; |
|
height: 150px; |
|
top: 50%; |
|
left: 50%; |
|
transform: translate(-50%, -50%); |
|
animation: pulse 5s infinite alternate; |
|
} |
|
@keyframes float { |
|
0%, 100% { transform: translateY(0) rotate(0deg); } |
|
50% { transform: translateY(-20px) rotate(10deg); } |
|
} |
|
@keyframes pulse { |
|
0% { transform: translate(-50%, -50%) scale(1); opacity: 0.5; } |
|
100% { transform: translate(-50%, -50%) scale(1.1); opacity: 0.8; } |
|
} |
|
/* Gradio component styling */ |
|
.gr-box { |
|
background-color: rgba(255, 255, 255, 0.1) !important; |
|
border: 1px solid rgba(255, 255, 255, 0.2) !important; |
|
} |
|
.gr-input, .gr-button { |
|
background-color: rgba(255, 255, 255, 0.1) !important; |
|
color: #f2e9e4 !important; |
|
border: 1px solid rgba(255, 255, 255, 0.2) !important; |
|
} |
|
.gr-button:hover { |
|
background-color: rgba(255, 255, 255, 0.2) !important; |
|
} |
|
.gr-form { |
|
background-color: transparent !important; |
|
} |
|
.concept { |
|
position: relative; |
|
transition: transform 0.3s, box-shadow 0.3s; |
|
border-radius: 15px; |
|
overflow: hidden; |
|
background: rgba(255, 255, 255, 0.1); |
|
box-shadow: 0 5px 15px rgba(0,0,0,0.2); |
|
width: 150px; |
|
height: 150px; |
|
display: flex; |
|
flex-direction: column; |
|
justify-content: center; |
|
align-items: center; |
|
} |
|
.concept:hover { |
|
transform: translateY(-10px) rotate(3deg); |
|
box-shadow: 0 15px 30px rgba(0,0,0,0.4); |
|
} |
|
.concept-emoji { |
|
font-size: 60px; |
|
margin-bottom: 10px; |
|
} |
|
.concept-description { |
|
background-color: rgba(110, 72, 170, 0.8); |
|
color: white; |
|
padding: 10px; |
|
font-size: 0.9em; |
|
text-align: center; |
|
width: 100%; |
|
position: absolute; |
|
bottom: 0; |
|
} |
|
|
|
|
|
</style> |
|
|
|
<div id="app-header"> |
|
<div class="artifact large"></div> |
|
<div class="artifact medium"></div> |
|
<div class="artifact small"></div> |
|
<h1>Dreamscape Creator</h1> |
|
<p>Unleash your imagination with AI-powered generative art</p> |
|
<div class="concept-container"> |
|
<div class="concept"> |
|
<div class="concept-emoji">π¨</div> |
|
<div class="concept-description">Illustration Style</div> |
|
</div> |
|
<div class="concept"> |
|
<div class="concept-emoji">βοΈ</div> |
|
<div class="concept-description">Line Art</div> |
|
</div> |
|
<div class="concept"> |
|
<div class="concept-emoji">π</div> |
|
<div class="concept-description">Midjourney Style</div> |
|
</div> |
|
<div class="concept"> |
|
<div class="concept-emoji">π</div> |
|
<div class="concept-description">Hanfu Anime</div> |
|
</div> |
|
</div> |
|
</div> |
|
""" |
|
with gr.Blocks(css=css_and_html) as demo: |
|
gr.HTML(css_and_html) |
|
|
|
with gr.Row(): |
|
text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...") |
|
style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style") |
|
|
|
with gr.Row(): |
|
inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps") |
|
guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale") |
|
seed = gr.Slider(0, 10000, 42, step=1, label="Seed") |
|
|
|
with gr.Row(): |
|
guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale") |
|
loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale") |
|
|
|
with gr.Row(): |
|
image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256") |
|
|
|
with gr.Row(): |
|
generate_button = gr.Button("Create Dreamscape", variant="primary") |
|
|
|
with gr.Row(): |
|
output_image = gr.Image(label="Your Dreamscape") |
|
output_image_guided = gr.Image(label="Guided Dreamscape") |
|
|
|
generate_button.click( |
|
inference, |
|
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size], |
|
outputs=[output_image, output_image_guided] |
|
) |
|
|
|
gr.Examples( |
|
examples=[ |
|
["Magical Forest with Glowing Trees", 'Birb Style', 40, 7.5, 42, 'Grayscale', 200, "256x256"], |
|
[" Ancient Temple Ruins at Sunset", 'Midjourney', 30, 8.0, 123, 'Bright', 5678, "256x256"], |
|
["Japanese garden with cherry blossoms", 'Hitokomoru Style', 40, 7.0, 789, 'Contrast', 250, "256x256"], |
|
], |
|
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size], |
|
outputs=[output_image, output_image_guided], |
|
fn=inference, |
|
cache_examples=True, |
|
examples_per_page=5 |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |