sagar007 commited on
Commit
26cf9fb
1 Parent(s): d89941a

Upload 4 files

Browse files
Files changed (4) hide show
  1. cat.jpg +0 -0
  2. datasets.py +38 -0
  3. dog.jpg +0 -0
  4. resnet.py +76 -0
cat.jpg ADDED
datasets.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ """
3
+ Module containing wrapper classes for PyTorch Datasets
4
+ Author: Shilpaj Bhalerao
5
+ Date: Jun 25, 2023
6
+ """
7
+ # Standard Library Imports
8
+ from typing import Tuple
9
+
10
+ # Third-Party Imports
11
+ from torchvision import datasets, transforms
12
+
13
+
14
+ class AlbumDataset(datasets.CIFAR10):
15
+ """
16
+ Wrapper class to use albumentations library with PyTorch Dataset
17
+ """
18
+ def __init__(self, root: str = "./data", train: bool = True, download: bool = True, transform: list = None):
19
+ """
20
+ Constructor
21
+ :param root: Directory at which data is stored
22
+ :param train: Param to distinguish if data is training or test
23
+ :param download: Param to download the dataset from source
24
+ :param transform: List of transformation to be performed on the dataset
25
+ """
26
+ super().__init__(root=root, train=train, download=download, transform=transform)
27
+
28
+ def __getitem__(self, index: int) -> Tuple:
29
+ """
30
+ Method to return image and its label
31
+ :param index: Index of image and label in the dataset
32
+ """
33
+ image, label = self.data[index], self.targets[index]
34
+
35
+ if self.transform:
36
+ transformed = self.transform(image=image)
37
+ image = transformed["image"]
38
+ return image, label
dog.jpg ADDED
resnet.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ResNet in PyTorch.
3
+ For Pre-activation ResNet, see 'preact_resnet.py'.
4
+
5
+ Reference:
6
+ [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
7
+ Deep Residual Learning for Image Recognition. arXiv:1512.03385
8
+ """
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+
12
+
13
+ class BasicBlock(nn.Module):
14
+ expansion = 1
15
+
16
+ def __init__(self, in_planes, planes, stride=1):
17
+ super(BasicBlock, self).__init__()
18
+ self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
19
+ self.bn1 = nn.BatchNorm2d(planes)
20
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
21
+ self.bn2 = nn.BatchNorm2d(planes)
22
+
23
+ self.shortcut = nn.Sequential()
24
+ if stride != 1 or in_planes != self.expansion*planes:
25
+ self.shortcut = nn.Sequential(
26
+ nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
27
+ nn.BatchNorm2d(self.expansion*planes)
28
+ )
29
+
30
+ def forward(self, x):
31
+ out = F.relu(self.bn1(self.conv1(x)))
32
+ out = self.bn2(self.conv2(out))
33
+ out += self.shortcut(x)
34
+ out = F.relu(out)
35
+ return out
36
+
37
+
38
+ class ResNet(nn.Module):
39
+ def __init__(self, block, num_blocks, num_classes=10):
40
+ super(ResNet, self).__init__()
41
+ self.in_planes = 64
42
+
43
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
44
+ self.bn1 = nn.BatchNorm2d(64)
45
+ self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
46
+ self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
47
+ self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
48
+ self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
49
+ self.linear = nn.Linear(512*block.expansion, num_classes)
50
+
51
+ def _make_layer(self, block, planes, num_blocks, stride):
52
+ strides = [stride] + [1]*(num_blocks-1)
53
+ layers = []
54
+ for stride in strides:
55
+ layers.append(block(self.in_planes, planes, stride))
56
+ self.in_planes = planes * block.expansion
57
+ return nn.Sequential(*layers)
58
+
59
+ def forward(self, x):
60
+ out = F.relu(self.bn1(self.conv1(x)))
61
+ out = self.layer1(out)
62
+ out = self.layer2(out)
63
+ out = self.layer3(out)
64
+ out = self.layer4(out)
65
+ out = F.avg_pool2d(out, 4)
66
+ out = out.view(out.size(0), -1)
67
+ out = self.linear(out)
68
+ return out
69
+
70
+
71
+ def ResNet18():
72
+ return ResNet(BasicBlock, [2, 2, 2, 2])
73
+
74
+
75
+ def ResNet34():
76
+ return ResNet(BasicBlock, [3, 4, 6, 3])