GPT-2-with_gpu / app.py
sagar007's picture
Update app.py
ec014a4 verified
raw
history blame
9.77 kB
import torch
import torch.nn as nn
from torch.nn import functional as F
import tiktoken
import gradio as gr
try:
import spaces
use_spaces_gpu = True
except ImportError:
use_spaces_gpu = False
def dummy_gpu_decorator(func):
return func
spaces = type('', (), {'GPU': dummy_gpu_decorator})()
# Define the GPTConfig class
class GPTConfig:
def __init__(self):
self.block_size = 1024
self.vocab_size = 50304
self.n_layer = 12
self.n_head = 12
self.n_embd = 768
# Define other necessary classes
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
self.n_head = config.n_head
self.n_embd = config.n_embd
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
def forward(self, x):
B, T, C = x.size()
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2)
y = F.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=True)
y = y.transpose(1, 2).contiguous().view(B, T, C)
return self.c_proj(y)
class MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
self.gelu = nn.GELU()
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
def forward(self, x):
return self.c_proj(self.gelu(self.c_fc(x)))
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
self.ln_2 = nn.LayerNorm(config.n_embd)
self.mlp = MLP(config)
def forward(self, x):
x = x + self.attn(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd),
wpe = nn.Embedding(config.block_size, config.n_embd),
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
ln_f = nn.LayerNorm(config.n_embd),
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.transformer.wte.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self, idx, targets=None):
device = idx.device
b, t = idx.size()
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0)
tok_emb = self.transformer.wte(idx)
pos_emb = self.transformer.wpe(pos)
x = tok_emb + pos_emb
for block in self.transformer.h:
x = block(x)
x = self.transformer.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
return logits, loss
# Update the load_model function
@spaces.GPU
def load_model(model_path):
config = GPTConfig()
model = GPT(config)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = torch.load(model_path, map_location=device)
if 'model_state_dict' in checkpoint:
model.load_state_dict(checkpoint['model_state_dict'])
else:
model.load_state_dict(checkpoint)
model.eval()
model.to(device)
return model
enc = tiktoken.get_encoding('gpt2')
# Update the generate_text function
@spaces.GPU
def generate_text(prompt, max_length=432, temperature=0.8, top_k=40):
model = load_model('gpt_model.pth')
device = next(model.parameters()).device
input_ids = torch.tensor(enc.encode(prompt)).unsqueeze(0).to(device)
generated = []
with torch.no_grad():
for _ in range(max_length):
outputs, _ = model(input_ids)
next_token_logits = outputs[:, -1, :]
next_token_logits = next_token_logits / temperature
top_k_logits, top_k_indices = torch.topk(next_token_logits, top_k, dim=-1)
next_token_probs = F.softmax(top_k_logits, dim=-1)
next_token_index = torch.multinomial(next_token_probs, num_samples=1)
next_token = top_k_indices.gather(-1, next_token_index)
input_ids = torch.cat([input_ids, next_token], dim=-1)
generated.append(next_token.item())
if next_token.item() == enc.encode('\n')[0] and len(generated) > 100:
break
return enc.decode(generated)
# Add the gradio_generate function
@spaces.GPU
def gradio_generate(prompt, max_length, temperature, top_k):
return generate_text(prompt, max_length, temperature, top_k)
# # Your existing imports and model code here...
css = """
<style>
body {
background-color: #0f1624;
color: #e0e0e0;
font-family: 'Courier New', monospace;
background-image:
radial-gradient(white, rgba(255,255,255,.2) 2px, transparent 40px),
radial-gradient(white, rgba(255,255,255,.15) 1px, transparent 30px),
radial-gradient(white, rgba(255,255,255,.1) 2px, transparent 40px),
radial-gradient(rgba(255,255,255,.4), rgba(255,255,255,.1) 2px, transparent 30px);
background-size: 550px 550px, 350px 350px, 250px 250px, 150px 150px;
background-position: 0 0, 40px 60px, 130px 270px, 70px 100px;
animation: backgroundScroll 60s linear infinite;
}
@keyframes backgroundScroll {
0% { background-position: 0 0, 40px 60px, 130px 270px, 70px 100px; }
100% { background-position: 550px 550px, 590px 610px, 680px 820px, 620px 650px; }
}
.container { max-width: 800px; margin: 0 auto; padding: 20px; }
.header {
text-align: center;
margin-bottom: 30px;
font-family: 'Copperplate', fantasy;
color: #ffd700;
text-shadow: 0 0 10px #ffd700, 0 0 20px #ffd700, 0 0 30px #ffd700;
}
.chat-box {
background-color: rgba(42, 42, 42, 0.7);
border-radius: 15px;
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 0 20px rgba(255, 215, 0, 0.3);
}
.user-input {
background-color: rgba(58, 58, 58, 0.8);
border: 2px solid #ffd700;
color: #ffffff;
padding: 10px;
border-radius: 5px;
width: 100%;
transition: all 0.3s ease;
}
.user-input:focus {
box-shadow: 0 0 15px #ffd700;
}
.generate-btn {
background-color: #ffd700;
color: #0f1624;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
font-weight: bold;
transition: all 0.3s ease;
}
.generate-btn:hover {
background-color: #ffec8b;
transform: scale(1.05);
}
.output-box {
background-color: rgba(42, 42, 42, 0.7);
border-radius: 15px;
padding: 20px;
margin-top: 20px;
min-height: 100px;
border: 1px solid #ffd700;
white-space: pre-wrap;
font-family: 'Georgia', serif;
line-height: 1.6;
box-shadow: inset 0 0 10px rgba(255, 215, 0, 0.3);
}
.gr-slider {
--slider-color: #ffd700;
}
.gr-box {
border-color: #ffd700;
background-color: rgba(42, 42, 42, 0.7);
}
</style>
"""
with gr.Blocks(css=css) as demo:
gr.HTML("<div class='header'><h1>🌟 Enchanted Tales Generator 🌟</h1></div>")
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
placeholder="Begin your magical journey here (e.g., 'In a realm beyond the mists of time...')",
label="Story Incantation",
elem_classes="user-input"
)
with gr.Column(scale=1):
generate_btn = gr.Button("Weave the Tale", elem_classes="generate-btn")
with gr.Row():
max_length = gr.Slider(minimum=50, maximum=500, value=432, step=1, label="Scroll Length")
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.8, step=0.1, label="Magical Intensity")
top_k = gr.Slider(minimum=1, maximum=100, value=40, step=1, label="Arcane Diversity")
output = gr.Markdown(elem_classes="output-box")
generate_btn.click(
gradio_generate,
inputs=[prompt, max_length, temperature, top_k],
outputs=output
)
gr.HTML("""
<div style="text-align: center; margin-top: 20px; font-style: italic; color: #ffd700;">
"In the realm of imagination, every word is a spell, every sentence a charm."
</div>
""")
if __name__ == "__main__":
demo.launch()