Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,49 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import spaces
|
4 |
from duckduckgo_search import DDGS
|
5 |
import time
|
6 |
import torch
|
7 |
from datetime import datetime
|
|
|
8 |
|
9 |
-
# Initialize model and tokenizer
|
10 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
tokenizer.pad_token = tokenizer.eos_token
|
13 |
|
14 |
-
#
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
model_name,
|
17 |
-
|
|
|
18 |
low_cpu_mem_usage=True,
|
19 |
-
torch_dtype=torch.float32
|
20 |
)
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
23 |
"""Get web search results using DuckDuckGo"""
|
24 |
try:
|
25 |
with DDGS() as ddgs:
|
26 |
results = list(ddgs.text(query, max_results=max_results))
|
27 |
return [{
|
28 |
"title": result.get("title", ""),
|
29 |
-
"snippet": result["body"],
|
30 |
"url": result["href"],
|
31 |
"date": result.get("published", "")
|
32 |
} for result in results]
|
@@ -34,19 +51,10 @@ def get_web_results(query, max_results=5): # Increased to 5 for better context
|
|
34 |
return []
|
35 |
|
36 |
def format_prompt(query, context):
|
37 |
-
"""Format the prompt with web context"""
|
38 |
-
|
39 |
-
|
40 |
-
return f"""
|
41 |
-
Current Time: {current_time}
|
42 |
-
|
43 |
-
Query: {query}
|
44 |
-
|
45 |
-
Web Context:
|
46 |
-
{context_lines}
|
47 |
-
|
48 |
-
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc.
|
49 |
-
Answer:"""
|
50 |
|
51 |
def format_sources(web_results):
|
52 |
"""Format sources with more details"""
|
@@ -71,69 +79,81 @@ def format_sources(web_results):
|
|
71 |
return sources_html
|
72 |
|
73 |
def generate_answer(prompt):
|
74 |
-
"""Generate answer using the DeepSeek model"""
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
attention_mask=inputs.attention_mask,
|
87 |
-
max_new_tokens=128, # Reduced for faster generation on CPU
|
88 |
-
temperature=0.7,
|
89 |
-
top_p=0.95,
|
90 |
-
pad_token_id=tokenizer.eos_token_id,
|
91 |
-
do_sample=True,
|
92 |
-
early_stopping=True,
|
93 |
-
num_beams=1 # Reduced beam search for faster generation
|
94 |
-
)
|
95 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
96 |
|
97 |
def process_query(query, history):
|
98 |
-
"""Process user query with streaming effect"""
|
99 |
try:
|
100 |
if history is None:
|
101 |
history = []
|
102 |
-
|
103 |
# Get web results first
|
104 |
web_results = get_web_results(query)
|
105 |
sources_html = format_sources(web_results)
|
106 |
|
107 |
-
|
108 |
yield {
|
109 |
-
answer_output: gr.Markdown("*Searching
|
110 |
sources_output: gr.HTML(sources_html),
|
111 |
-
search_btn: gr.Button("
|
112 |
-
chat_history_display:
|
113 |
}
|
114 |
|
115 |
-
# Generate answer
|
116 |
prompt = format_prompt(query, web_results)
|
117 |
answer = generate_answer(prompt)
|
118 |
-
final_answer = answer.split("Answer:")[-1].strip()
|
119 |
|
120 |
-
|
|
|
121 |
yield {
|
122 |
-
answer_output: gr.Markdown(
|
123 |
sources_output: gr.HTML(sources_html),
|
124 |
search_btn: gr.Button("Search", interactive=True),
|
125 |
-
chat_history_display:
|
126 |
}
|
127 |
-
except Exception as e:
|
128 |
-
error_message = str(e)
|
129 |
-
if "GPU quota" in error_message:
|
130 |
-
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
131 |
|
|
|
|
|
132 |
yield {
|
133 |
-
answer_output: gr.Markdown(
|
134 |
-
sources_output: gr.HTML(
|
135 |
search_btn: gr.Button("Search", interactive=True),
|
136 |
-
chat_history_display: history + [[query,
|
137 |
}
|
138 |
|
139 |
# Update the CSS for better contrast and readability
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
3 |
import spaces
|
4 |
from duckduckgo_search import DDGS
|
5 |
import time
|
6 |
import torch
|
7 |
from datetime import datetime
|
8 |
+
import gc # For manual garbage collection
|
9 |
|
10 |
+
# Initialize model and tokenizer with optimizations
|
11 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
12 |
+
|
13 |
+
# Load config first to set optimal parameters
|
14 |
+
config = AutoConfig.from_pretrained(model_name)
|
15 |
+
config.use_cache = True # Enable KV-caching for faster inference
|
16 |
+
|
17 |
+
# Initialize tokenizer with optimizations
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
19 |
+
model_name,
|
20 |
+
model_max_length=256, # Reduced for faster processing
|
21 |
+
padding_side="left",
|
22 |
+
truncation_side="left",
|
23 |
+
)
|
24 |
tokenizer.pad_token = tokenizer.eos_token
|
25 |
|
26 |
+
# Load model with optimizations
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
model_name,
|
29 |
+
config=config,
|
30 |
+
device_map="cpu",
|
31 |
low_cpu_mem_usage=True,
|
32 |
+
torch_dtype=torch.float32,
|
33 |
)
|
34 |
|
35 |
+
# Enable model optimizations
|
36 |
+
model.eval() # Set to evaluation mode
|
37 |
+
torch.set_num_threads(4) # Limit CPU threads for better performance
|
38 |
+
|
39 |
+
def get_web_results(query, max_results=3): # Reduced max results
|
40 |
"""Get web search results using DuckDuckGo"""
|
41 |
try:
|
42 |
with DDGS() as ddgs:
|
43 |
results = list(ddgs.text(query, max_results=max_results))
|
44 |
return [{
|
45 |
"title": result.get("title", ""),
|
46 |
+
"snippet": result["body"][:200], # Limit snippet length
|
47 |
"url": result["href"],
|
48 |
"date": result.get("published", "")
|
49 |
} for result in results]
|
|
|
51 |
return []
|
52 |
|
53 |
def format_prompt(query, context):
|
54 |
+
"""Format the prompt with web context - optimized version"""
|
55 |
+
context_lines = '\n'.join([f'[{i+1}] {res["snippet"]}'
|
56 |
+
for i, res in enumerate(context)])
|
57 |
+
return f"""Answer this query using the context: {query}\n\nContext:\n{context_lines}\n\nAnswer:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
def format_sources(web_results):
|
60 |
"""Format sources with more details"""
|
|
|
79 |
return sources_html
|
80 |
|
81 |
def generate_answer(prompt):
|
82 |
+
"""Generate answer using the DeepSeek model - optimized version"""
|
83 |
+
try:
|
84 |
+
# Clear CUDA cache and garbage collect
|
85 |
+
if torch.cuda.is_available():
|
86 |
+
torch.cuda.empty_cache()
|
87 |
+
gc.collect()
|
88 |
+
|
89 |
+
inputs = tokenizer(
|
90 |
+
prompt,
|
91 |
+
return_tensors="pt",
|
92 |
+
padding=True,
|
93 |
+
truncation=True,
|
94 |
+
max_length=256,
|
95 |
+
return_attention_mask=True
|
96 |
+
)
|
97 |
+
|
98 |
+
with torch.no_grad(): # Disable gradient calculation
|
99 |
+
outputs = model.generate(
|
100 |
+
inputs.input_ids,
|
101 |
+
attention_mask=inputs.attention_mask,
|
102 |
+
max_new_tokens=100, # Further reduced for speed
|
103 |
+
temperature=0.7,
|
104 |
+
top_p=0.95,
|
105 |
+
pad_token_id=tokenizer.eos_token_id,
|
106 |
+
do_sample=True,
|
107 |
+
num_beams=1,
|
108 |
+
early_stopping=True,
|
109 |
+
no_repeat_ngram_size=3,
|
110 |
+
length_penalty=1.0
|
111 |
+
)
|
112 |
+
|
113 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
114 |
+
return response.split('Answer:')[-1].strip()
|
115 |
|
116 |
+
except Exception as e:
|
117 |
+
return f"Error generating response: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
|
119 |
def process_query(query, history):
|
120 |
+
"""Process user query with optimized streaming effect"""
|
121 |
try:
|
122 |
if history is None:
|
123 |
history = []
|
124 |
+
|
125 |
# Get web results first
|
126 |
web_results = get_web_results(query)
|
127 |
sources_html = format_sources(web_results)
|
128 |
|
129 |
+
# Show searching status
|
130 |
yield {
|
131 |
+
answer_output: gr.Markdown("*Searching and generating response...*"),
|
132 |
sources_output: gr.HTML(sources_html),
|
133 |
+
search_btn: gr.Button("Please wait...", interactive=False),
|
134 |
+
chat_history_display: history + [[query, "*Processing...*"]]
|
135 |
}
|
136 |
|
137 |
+
# Generate answer with timeout protection
|
138 |
prompt = format_prompt(query, web_results)
|
139 |
answer = generate_answer(prompt)
|
|
|
140 |
|
141 |
+
# Update with final answer
|
142 |
+
final_history = history + [[query, answer]]
|
143 |
yield {
|
144 |
+
answer_output: gr.Markdown(answer),
|
145 |
sources_output: gr.HTML(sources_html),
|
146 |
search_btn: gr.Button("Search", interactive=True),
|
147 |
+
chat_history_display: final_history
|
148 |
}
|
|
|
|
|
|
|
|
|
149 |
|
150 |
+
except Exception as e:
|
151 |
+
error_msg = f"Error: {str(e)}"
|
152 |
yield {
|
153 |
+
answer_output: gr.Markdown(error_msg),
|
154 |
+
sources_output: gr.HTML("<div>Error fetching sources</div>"),
|
155 |
search_btn: gr.Button("Search", interactive=True),
|
156 |
+
chat_history_display: history + [[query, error_msg]]
|
157 |
}
|
158 |
|
159 |
# Update the CSS for better contrast and readability
|