Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import re
|
| 3 |
+
from collections import Counter
|
| 4 |
+
|
| 5 |
+
# Define preprocessing and BPE functions
|
| 6 |
+
def preprocess_text(text):
|
| 7 |
+
# Remove punctuation and special characters, keep Hindi characters and spaces
|
| 8 |
+
text = re.sub(r'[^\u0900-\u097F\s]', '', text)
|
| 9 |
+
# Remove extra whitespace
|
| 10 |
+
text = ' '.join(text.split())
|
| 11 |
+
return text
|
| 12 |
+
|
| 13 |
+
def get_stats(vocab):
|
| 14 |
+
pairs = Counter()
|
| 15 |
+
for word, freq in vocab.items():
|
| 16 |
+
symbols = word.split()
|
| 17 |
+
for i in range(len(symbols) - 1):
|
| 18 |
+
pairs[symbols[i], symbols[i + 1]] += freq
|
| 19 |
+
return pairs
|
| 20 |
+
|
| 21 |
+
def merge_vocab(pair, v_in):
|
| 22 |
+
v_out = {}
|
| 23 |
+
bigram = ' '.join(pair)
|
| 24 |
+
replacement = ''.join(pair)
|
| 25 |
+
for word in v_in:
|
| 26 |
+
w_out = word.replace(bigram, replacement)
|
| 27 |
+
v_out[w_out] = v_in[word]
|
| 28 |
+
return v_out
|
| 29 |
+
|
| 30 |
+
def apply_bpe(text, bpe_codes):
|
| 31 |
+
word_list = text.split()
|
| 32 |
+
for pair, _ in bpe_codes:
|
| 33 |
+
if ' ' in pair:
|
| 34 |
+
p = re.compile(r'(?<!\S)' + re.escape(' '.join(pair)) + r'(?!\S)')
|
| 35 |
+
word_list = [p.sub(''.join(pair), word) for word in word_list]
|
| 36 |
+
return word_list
|
| 37 |
+
|
| 38 |
+
def bpe_process(text, target_vocab_size):
|
| 39 |
+
# Preprocess the text
|
| 40 |
+
preprocessed_text = preprocess_text(text)
|
| 41 |
+
|
| 42 |
+
# Initialize vocabulary with character-level tokens and common subwords
|
| 43 |
+
vocab = Counter(preprocessed_text.split())
|
| 44 |
+
vocab.update(Counter([preprocessed_text[i:i+2] for i in range(len(preprocessed_text)-1)]))
|
| 45 |
+
vocab.update(Counter([preprocessed_text[i:i+3] for i in range(len(preprocessed_text)-2)]))
|
| 46 |
+
|
| 47 |
+
# Perform BPE merges
|
| 48 |
+
bpe_codes = []
|
| 49 |
+
while len(vocab) < target_vocab_size:
|
| 50 |
+
pairs = get_stats(vocab)
|
| 51 |
+
if not pairs:
|
| 52 |
+
break
|
| 53 |
+
best = max(pairs, key=pairs.get)
|
| 54 |
+
vocab = merge_vocab(best, vocab)
|
| 55 |
+
bpe_codes.append((best, pairs[best]))
|
| 56 |
+
|
| 57 |
+
# Apply BPE to the original text
|
| 58 |
+
encoded_text = apply_bpe(preprocessed_text, bpe_codes)
|
| 59 |
+
|
| 60 |
+
# Calculate compression ratio
|
| 61 |
+
original_size = len(preprocessed_text)
|
| 62 |
+
compressed_size = len(' '.join(encoded_text))
|
| 63 |
+
compression_ratio = original_size / compressed_size if compressed_size != 0 else 0
|
| 64 |
+
|
| 65 |
+
# Create output text
|
| 66 |
+
encoded_output = ' '.join(encoded_text)
|
| 67 |
+
vocab_size = len(vocab)
|
| 68 |
+
|
| 69 |
+
# Determine criteria status
|
| 70 |
+
criteria_met = {
|
| 71 |
+
"Vocabulary Size Criterion": vocab_size >= 5000,
|
| 72 |
+
"Compression Ratio Criterion": compression_ratio >= 3
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
return encoded_output, vocab_size, compression_ratio, criteria_met
|
| 76 |
+
|
| 77 |
+
# Define the Gradio interface
|
| 78 |
+
iface = gr.Interface(
|
| 79 |
+
fn=bpe_process,
|
| 80 |
+
inputs=[
|
| 81 |
+
gr.Textbox(label="Input Text", lines=5, placeholder="Enter text here..."),
|
| 82 |
+
gr.Slider(minimum=1000, maximum=10000, step=100, value=6000, label="Target Vocabulary Size")
|
| 83 |
+
],
|
| 84 |
+
outputs=[
|
| 85 |
+
gr.Textbox(label="Encoded Text"),
|
| 86 |
+
gr.Number(label="Vocabulary Size"),
|
| 87 |
+
gr.Number(label="Compression Ratio"),
|
| 88 |
+
gr.JSON(label="Criteria Met")
|
| 89 |
+
],
|
| 90 |
+
title="Byte Pair Encoding (BPE) Gradio App",
|
| 91 |
+
description="Encode text using Byte Pair Encoding. Set the target vocabulary size and see the encoded output along with vocabulary size and compression ratio."
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# Launch the Gradio app
|
| 95 |
+
iface.launch()
|