Spaces:
Runtime error
Runtime error
Create token_classifier.py
Browse files- token_classifier.py +118 -0
token_classifier.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import DistilBertTokenizerFast, DistilBertForTokenClassification
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Define label mappings (ensure this matches the mappings used during training)
|
| 6 |
+
label2id = {'<negative_object>': 0, 'other': 2, '<positive_object>': 1}
|
| 7 |
+
id2label = {v: k for k, v in label2id.items()}
|
| 8 |
+
|
| 9 |
+
def prepare_input(tokens, tokenizer, max_length=128):
|
| 10 |
+
encoding = tokenizer(
|
| 11 |
+
tokens,
|
| 12 |
+
is_split_into_words=True,
|
| 13 |
+
return_tensors="pt",
|
| 14 |
+
padding='max_length',
|
| 15 |
+
truncation=True,
|
| 16 |
+
max_length=max_length,
|
| 17 |
+
return_offsets_mapping=True
|
| 18 |
+
)
|
| 19 |
+
return encoding
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def split_sentence(sentence):
|
| 23 |
+
# List of special tokens to preserve
|
| 24 |
+
special_tokens = ['<positive_object>', '<negative_object>']
|
| 25 |
+
|
| 26 |
+
# More comprehensive list of punctuation marks and symbols
|
| 27 |
+
punctuation = ',.?!;:()[]{}""\'`@#$%^&*+=|\\/<>-ββ'
|
| 28 |
+
|
| 29 |
+
# Initialize result list and temporary word
|
| 30 |
+
result = []
|
| 31 |
+
current_word = ''
|
| 32 |
+
i = 0
|
| 33 |
+
|
| 34 |
+
while i < len(sentence):
|
| 35 |
+
# Check for special tokens
|
| 36 |
+
found_special = False
|
| 37 |
+
for token in special_tokens:
|
| 38 |
+
if sentence[i:].startswith(token):
|
| 39 |
+
# Add previous word if exists
|
| 40 |
+
if current_word:
|
| 41 |
+
result.append(current_word)
|
| 42 |
+
current_word = ''
|
| 43 |
+
# Add special token
|
| 44 |
+
result.append(token)
|
| 45 |
+
i += len(token)
|
| 46 |
+
found_special = True
|
| 47 |
+
break
|
| 48 |
+
|
| 49 |
+
if found_special:
|
| 50 |
+
continue
|
| 51 |
+
|
| 52 |
+
# Handle punctuation
|
| 53 |
+
if sentence[i] in punctuation:
|
| 54 |
+
# Add previous word if exists
|
| 55 |
+
if current_word:
|
| 56 |
+
result.append(current_word)
|
| 57 |
+
current_word = ''
|
| 58 |
+
# Add punctuation as separate token
|
| 59 |
+
result.append(sentence[i])
|
| 60 |
+
|
| 61 |
+
# Handle spaces
|
| 62 |
+
elif sentence[i].isspace():
|
| 63 |
+
if current_word:
|
| 64 |
+
result.append(current_word)
|
| 65 |
+
current_word = ''
|
| 66 |
+
|
| 67 |
+
# Build regular words
|
| 68 |
+
else:
|
| 69 |
+
current_word += sentence[i]
|
| 70 |
+
|
| 71 |
+
i += 1
|
| 72 |
+
|
| 73 |
+
# Add final word if exists
|
| 74 |
+
if current_word:
|
| 75 |
+
result.append(current_word)
|
| 76 |
+
|
| 77 |
+
return result
|
| 78 |
+
|
| 79 |
+
def predict(tokens, model, tokenizer, device, max_length=128):
|
| 80 |
+
tokens = split_sentence(' '.join(tokens.lower().split()))
|
| 81 |
+
|
| 82 |
+
# Prepare the input
|
| 83 |
+
encoding = prepare_input(tokens, tokenizer, max_length=max_length)
|
| 84 |
+
word_ids = encoding.word_ids(batch_index=0) # List of word IDs
|
| 85 |
+
|
| 86 |
+
# Move tensors to device
|
| 87 |
+
input_ids = encoding['input_ids'].to(device)
|
| 88 |
+
attention_mask = encoding['attention_mask'].to(device)
|
| 89 |
+
|
| 90 |
+
# Inference
|
| 91 |
+
with torch.no_grad():
|
| 92 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 93 |
+
|
| 94 |
+
logits = outputs.logits
|
| 95 |
+
predictions = torch.argmax(logits, dim=-1).cpu().numpy()[0]
|
| 96 |
+
|
| 97 |
+
# Decode tokens and labels
|
| 98 |
+
tokens_decoded = tokenizer.convert_ids_to_tokens(input_ids.cpu().numpy()[0])
|
| 99 |
+
labels = [id2label.get(pred, 'O') for pred in predictions]
|
| 100 |
+
|
| 101 |
+
# Align tokens with original word-level tokens
|
| 102 |
+
aligned_predictions = []
|
| 103 |
+
previous_word_idx = None
|
| 104 |
+
for token, label, word_idx in zip(tokens_decoded, labels, word_ids):
|
| 105 |
+
if word_idx is None:
|
| 106 |
+
continue
|
| 107 |
+
if word_idx != previous_word_idx:
|
| 108 |
+
aligned_predictions.append((tokens[word_idx], label))
|
| 109 |
+
previous_word_idx = word_idx
|
| 110 |
+
return aligned_predictions
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def load_token_classifier(pretrained_token_classifier_path, device):
|
| 114 |
+
# Load tokenizer and model
|
| 115 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained(pretrained_token_classifier_path)
|
| 116 |
+
token_classifier = DistilBertForTokenClassification.from_pretrained(pretrained_token_classifier_path)
|
| 117 |
+
token_classifier.to(device)
|
| 118 |
+
return token_classifier, tokenizer
|