Spaces:
Sleeping
Sleeping
from typing import List | |
import torch | |
from torch.utils.data import Subset | |
from sklearn.model_selection import train_test_split | |
from utils.helper_functions import normalize_ratios | |
def stratified_random_split(ds: torch.utils.data.Dataset, parts: List[float], targets: List[int]) -> List[torch.utils.data.Dataset]: | |
""" | |
Perform a stratified random split on the dataset. | |
Args: | |
ds: PyTorch dataset to split. | |
parts: List of proportions that sum to 1. | |
targets: List of labels corresponding to dataset samples. | |
Returns: | |
List of PyTorch datasets corresponding to the splits. | |
""" | |
total_length = len(ds) | |
# Normalize ratios | |
parts = normalize_ratios(parts) | |
lengths = list(map(lambda p: int(p * total_length), parts)) | |
left_over = total_length - sum(lengths) | |
lengths[0] += left_over # Adjust first split to account for leftover | |
indices = list(range(total_length)) | |
train_indices, temp_indices, _, temp_targets = train_test_split( | |
indices, targets, test_size=(1 - parts[0]), stratify=targets, random_state=42 | |
) | |
val_size = parts[1] / (parts[1] + parts[2]) | |
val_indices, test_indices, _, _ = train_test_split( | |
temp_indices, temp_targets, test_size=(1 - val_size), stratify=temp_targets, random_state=42 | |
) | |
return [Subset(ds, train_indices), Subset(ds, val_indices), Subset(ds, test_indices)] | |