Spaces:
Sleeping
Sleeping
QAway-to
commited on
Commit
·
90ba9ea
1
Parent(s):
7043d8e
Base app.py interface v1.0
Browse files
app.py
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
-
|
| 2 |
-
from transformers import pipeline
|
| 3 |
-
from datetime import datetime, timedelta
|
| 4 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
# ============================================================
|
| 9 |
-
API_KEY = "YOUR_FRED_API_KEY" # зарегистрируй на https://fred.stlouisfed.org/
|
| 10 |
FRED_URL = "https://api.stlouisfed.org/fred/series/observations"
|
| 11 |
-
|
| 12 |
INDICATORS = {
|
| 13 |
"GDP": "GDP",
|
| 14 |
"Inflation (CPI)": "CPIAUCSL",
|
|
@@ -16,63 +17,62 @@ INDICATORS = {
|
|
| 16 |
"Interest Rate (Fed Funds)": "FEDFUNDS"
|
| 17 |
}
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
params = {
|
| 23 |
-
"series_id":
|
| 24 |
-
"api_key":
|
| 25 |
"file_type": "json",
|
| 26 |
-
"observation_start":
|
| 27 |
-
"observation_end": end
|
| 28 |
}
|
| 29 |
-
|
| 30 |
-
data = r.json().get("observations", [])
|
| 31 |
df = pd.DataFrame(data)
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
return df
|
| 35 |
-
|
| 36 |
-
# ============================================================
|
| 37 |
-
# 2️⃣ Генерация сводки (LLM)
|
| 38 |
-
# ============================================================
|
| 39 |
-
generator = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
df =
|
| 44 |
if df.empty:
|
| 45 |
-
return "⚠️ No data
|
| 46 |
-
last = df.tail(5)
|
| 47 |
-
trend = last["value"].pct_change().mean() * 100
|
| 48 |
-
context = f"Recent values of {topic}:\n{last[['date','value']].to_string(index=False)}\n\nAverage change: {trend:.2f}%"
|
| 49 |
-
prompt = f"Provide an analytical summary of the trend:\n{context}"
|
| 50 |
-
summary = generator(prompt, max_new_tokens=150)[0]["generated_text"]
|
| 51 |
-
return summary, df
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
filename = f"powerbi_{topic.replace(' ', '_').lower()}.csv"
|
| 58 |
-
df.to_csv(filename, index=False)
|
| 59 |
-
return filename
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
with gr.Blocks(title="🏦 RAG Financial Analytics → Power BI") as app:
|
| 65 |
-
gr.Markdown("## 🏦 Financial RAG: FRED API → LLM → Power BI")
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
|
|
|
| 77 |
|
| 78 |
-
|
|
|
|
| 1 |
+
# app.py — Financial RAG Dashboard
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
+
import asyncio
|
| 4 |
+
import requests
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from itertools import cycle
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from datetime import datetime
|
| 9 |
|
| 10 |
+
# 🔧 Настройки
|
| 11 |
+
FRED_KEY = "YOUR_FRED_API_KEY"
|
|
|
|
|
|
|
| 12 |
FRED_URL = "https://api.stlouisfed.org/fred/series/observations"
|
|
|
|
| 13 |
INDICATORS = {
|
| 14 |
"GDP": "GDP",
|
| 15 |
"Inflation (CPI)": "CPIAUCSL",
|
|
|
|
| 17 |
"Interest Rate (Fed Funds)": "FEDFUNDS"
|
| 18 |
}
|
| 19 |
|
| 20 |
+
# 🧠 Модель генерации аналитики
|
| 21 |
+
generator = pipeline("text2text-generation", model="google/flan-t5-base")
|
| 22 |
+
|
| 23 |
+
# 🔁 Анимация “обработка...”
|
| 24 |
+
async def async_loader(update_fn, delay=0.15):
|
| 25 |
+
frames = cycle(["⠋","⠙","⠹","⠸","⠼","⠴","⠦","⠧","⠇","⠏"])
|
| 26 |
+
for frame in frames:
|
| 27 |
+
update_fn(f"💭 Fetching FRED data {frame}")
|
| 28 |
+
await asyncio.sleep(delay)
|
| 29 |
+
|
| 30 |
+
# 📈 Получение данных FRED
|
| 31 |
+
def fetch_data(indicator):
|
| 32 |
+
series = INDICATORS[indicator]
|
| 33 |
params = {
|
| 34 |
+
"series_id": series,
|
| 35 |
+
"api_key": FRED_KEY,
|
| 36 |
"file_type": "json",
|
| 37 |
+
"observation_start": "2024-01-01",
|
|
|
|
| 38 |
}
|
| 39 |
+
data = requests.get(FRED_URL, params=params).json().get("observations", [])
|
|
|
|
| 40 |
df = pd.DataFrame(data)
|
| 41 |
+
df["value"] = pd.to_numeric(df["value"], errors="coerce")
|
| 42 |
+
return df.tail(8)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
+
# 🧩 Аналитика и экспорт
|
| 45 |
+
def generate_and_export(indicator):
|
| 46 |
+
df = fetch_data(indicator)
|
| 47 |
if df.empty:
|
| 48 |
+
return "⚠️ No data found.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
+
trend = df["value"].pct_change().mean() * 100
|
| 51 |
+
context = f"Recent {indicator} data:\n{df[['date','value']].to_string(index=False)}"
|
| 52 |
+
prompt = f"Analyze this economic indicator and summarize its recent trend:\n{context}\nAverage change: {trend:.2f}%"
|
| 53 |
+
summary = generator(prompt, max_new_tokens=120)[0]["generated_text"]
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
fname = f"powerbi_{indicator.lower().replace(' ','_')}.csv"
|
| 56 |
+
df.to_csv(fname, index=False)
|
| 57 |
+
return summary, fname
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
# 🧱 Gradio Interface
|
| 60 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="🏦 Financial RAG → Power BI") as demo:
|
| 61 |
+
gr.Markdown(
|
| 62 |
+
"## 🏦 Financial RAG Dashboard\n"
|
| 63 |
+
"Автоматическая аналитика по банковским данным (FRED API) с экспортом в Power BI.\n\n"
|
| 64 |
+
"_Интерфейс с потоковой анимацией и аккуратной вёрсткой._"
|
| 65 |
+
)
|
| 66 |
|
| 67 |
+
with gr.Row():
|
| 68 |
+
with gr.Column(scale=1):
|
| 69 |
+
indicator = gr.Dropdown(list(INDICATORS.keys()), label="Выберите показатель", value="Inflation (CPI)")
|
| 70 |
+
btn = gr.Button("📊 Получить аналитику", variant="primary")
|
| 71 |
+
with gr.Column(scale=2):
|
| 72 |
+
summary = gr.Textbox(label="📈 Сводка аналитики", lines=8)
|
| 73 |
+
export_file = gr.File(label="📂 Файл для Power BI")
|
| 74 |
|
| 75 |
+
# Обработчик
|
| 76 |
+
btn.click(generate_and_export, inputs=indicator, outputs=[summary, export_file])
|
| 77 |
|
| 78 |
+
demo.queue(max_size=32).launch(server_name="0.0.0.0", server_port=7860)
|