Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -169,19 +169,25 @@ sdg_colors = {
|
|
169 |
}
|
170 |
|
171 |
# Function to plot SDG dominant bar graphs using Plotly
|
172 |
-
def plot_sdg(df, title, pred_column):
|
173 |
-
"""
|
|
|
|
|
174 |
Args:
|
175 |
-
df: DataFrame containing SDG predictions.
|
176 |
-
title: Title of the plot.
|
177 |
-
pred_column: Column to use for plotting.
|
|
|
|
|
|
|
|
|
178 |
"""
|
179 |
df_filtered = df[df[pred_column].notna()]
|
180 |
labels = df_filtered[pred_column].value_counts().sort_values(ascending=False)
|
181 |
total = labels.sum()
|
182 |
percentages = (labels / total) * 100
|
183 |
|
184 |
-
# Create a bar plot with Plotly
|
185 |
fig = px.bar(
|
186 |
percentages.rename_axis('SDG Label').reset_index(name='Percentage'),
|
187 |
y='SDG Label',
|
@@ -212,9 +218,9 @@ def plot_sdg(df, title, pred_column):
|
|
212 |
title=None,
|
213 |
tickfont=dict(size=12)
|
214 |
),
|
215 |
-
margin=dict(l=20, r=
|
216 |
height=600,
|
217 |
-
width=
|
218 |
showlegend=False,
|
219 |
template="simple_white",
|
220 |
xaxis=dict(
|
@@ -222,6 +228,37 @@ def plot_sdg(df, title, pred_column):
|
|
222 |
),
|
223 |
)
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
return fig
|
226 |
|
227 |
def save_figure_as_jpeg(fig, filename):
|
|
|
169 |
}
|
170 |
|
171 |
# Function to plot SDG dominant bar graphs using Plotly
|
172 |
+
def plot_sdg(df, title, pred_column, icons_folder='assets/icons/'):
|
173 |
+
"""
|
174 |
+
Plots a horizontal bar graph of SDG predictions and superimposes the icon of the most frequent SDG.
|
175 |
+
|
176 |
Args:
|
177 |
+
df (pd.DataFrame): DataFrame containing SDG predictions.
|
178 |
+
title (str): Title of the plot.
|
179 |
+
pred_column (str): Column name to use for plotting (e.g., 'pred1').
|
180 |
+
icons_folder (str): Path to the folder containing SDG icons.
|
181 |
+
|
182 |
+
Returns:
|
183 |
+
plotly.graph_objs._figure.Figure: The Plotly figure object.
|
184 |
"""
|
185 |
df_filtered = df[df[pred_column].notna()]
|
186 |
labels = df_filtered[pred_column].value_counts().sort_values(ascending=False)
|
187 |
total = labels.sum()
|
188 |
percentages = (labels / total) * 100
|
189 |
|
190 |
+
# Create a horizontal bar plot with Plotly
|
191 |
fig = px.bar(
|
192 |
percentages.rename_axis('SDG Label').reset_index(name='Percentage'),
|
193 |
y='SDG Label',
|
|
|
218 |
title=None,
|
219 |
tickfont=dict(size=12)
|
220 |
),
|
221 |
+
margin=dict(l=20, r=150, t=30, b=20), # Increased right margin for icon
|
222 |
height=600,
|
223 |
+
width=800, # Increased width to accommodate the icon
|
224 |
showlegend=False,
|
225 |
template="simple_white",
|
226 |
xaxis=dict(
|
|
|
228 |
),
|
229 |
)
|
230 |
|
231 |
+
# Identify the most frequent SDG
|
232 |
+
if not percentages.empty:
|
233 |
+
top_sdg_label = percentages.index[0] # e.g., 'SDG1_No Poverty'
|
234 |
+
|
235 |
+
# Map SDG label to icon filename
|
236 |
+
# Assuming naming convention 'SDG1.png', 'SDG2.png', etc.
|
237 |
+
sdg_number = top_sdg_label.split('_')[0] # Extract 'SDG1'
|
238 |
+
icon_filename = f"{sdg_number}.png" # e.g., 'SDG1.png'
|
239 |
+
icon_path = os.path.join(icons_folder, icon_filename)
|
240 |
+
|
241 |
+
# Check if the icon file exists
|
242 |
+
if os.path.exists(icon_path):
|
243 |
+
# Read and encode the image
|
244 |
+
with open(icon_path, 'rb') as image_file:
|
245 |
+
encoded_image = base64.b64encode(image_file.read()).decode('utf-8')
|
246 |
+
|
247 |
+
# Add the icon as an image in the Plotly figure
|
248 |
+
fig.add_layout_image(
|
249 |
+
dict(
|
250 |
+
source='data:image/png;base64,' + encoded_image,
|
251 |
+
xref="paper", yref="paper",
|
252 |
+
x=1.05, y=1, # Positioning: slightly to the right and top
|
253 |
+
sizex=0.2, sizey=0.2, # Size of the icon
|
254 |
+
xanchor="left",
|
255 |
+
yanchor="top",
|
256 |
+
layer="above" # Ensure the icon is above other plot elements
|
257 |
+
)
|
258 |
+
)
|
259 |
+
else:
|
260 |
+
print(f"Icon file '{icon_path}' not found. Skipping icon overlay.")
|
261 |
+
|
262 |
return fig
|
263 |
|
264 |
def save_figure_as_jpeg(fig, filename):
|