Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, T5ForConditionalGeneration, AutoModelForSeq2SeqLM | |
import streamlit as st | |
from summarizer import Summarizer | |
import nltk | |
nltk.download('punkt') | |
available_models = { | |
"IlyaGusev/rugpt3medium_sum_gazeta": "Russian Summarization (IlyaGusev/rugpt3medium_sum_gazeta)", | |
"Shahm/t5-small-german": "German Summarization (Shahm/t5-small-german)", | |
"Falconsai/medical_summarization": "English Summarization (Falconsai/medical_summarization)", | |
"sacreemure/med_t5_summ_ru":"Russian Medical Texts Summarization (sacreemure/med_t5_summ_ru)" | |
} | |
def hugging_face_summarize(article, model_name, num_sentences): | |
if "rugpt3medium" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
input_ids = tokenizer(article, return_tensors='pt', max_length=400, truncation=True, padding=True)["input_ids"] | |
output_ids = model.generate(input_ids, max_new_tokens=300, repetition_penalty = 7.0, num_return_sequences=5, temperature = 0.7, top_k=50, early_stopping=True)[0] | |
summary = tokenizer.decode(output_ids, skip_special_tokens=True) | |
elif "medical" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
input_ids= tokenizer(article, return_tensors='pt', max_length=504, truncation=True, padding=True)["input_ids"] | |
output_ids = model.generate(input_ids, max_new_tokens=500) | |
summary = tokenizer.decode(output_ids, skip_special_tokens=True) | |
elif "med_t5" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = T5ForConditionalGeneration.from_pretrained(model_name) | |
input_ids = tokenizer(article, return_tensors='pt', max_length=2048, truncation=True)["input_ids"] | |
output_ids = model.generate(input_ids, min_length=800, max_length=1000, repetition_penalty = 2.0, num_return_sequences=1, temperature = 0.7, top_k=50, early_stopping=True)[0] | |
summary = tokenizer.decode(output_ids, skip_special_tokens=True) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, use_fast=False) | |
inputs = tokenizer(article, return_tensors="pt", max_length=800, truncation=True, padding=True) | |
output_ids = model.generate(inputs.input_ids, max_new_tokens=100, num_return_sequences=1) | |
summary = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
summary_sentences = nltk.sent_tokenize(summary) | |
summary = ' '.join(summary_sentences[:num_sentences]) | |
return summary | |
def main(): | |
st.title("Суммаризатор медицинских текстов") | |
st.write("Вы можете выбрать модель суммаризации для русского, английского или немецкого") | |
selected_model = st.selectbox("Выберите модель:", list(available_models.values())) | |
article_text = st.text_area("Введите текст:") | |
num_sentences = st.slider("Выберите количество предложений в суммаризированном тексте:", min_value=1, max_value=10, value=3) | |
if st.button("Суммаризировать"): | |
if article_text: | |
model_name = [name for name, model in available_models.items() if model == selected_model][0] | |
summary = hugging_face_summarize(article_text, model_name, num_sentences) | |
st.subheader("Сокращенный текст:") | |
st.write(summary) | |
else: | |
st.warning("Пожалуйста, введите текст.") | |
if __name__ == "__main__": | |
main() | |