Spaces:
Runtime error
Runtime error
# Copyright 2024 The HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from collections import OrderedDict | |
from huggingface_hub.utils import validate_hf_hub_args | |
from ..configuration_utils import ConfigMixin | |
from .controlnet import ( | |
StableDiffusionControlNetImg2ImgPipeline, | |
StableDiffusionControlNetInpaintPipeline, | |
StableDiffusionControlNetPipeline, | |
StableDiffusionXLControlNetImg2ImgPipeline, | |
StableDiffusionXLControlNetInpaintPipeline, | |
StableDiffusionXLControlNetPipeline, | |
) | |
from .deepfloyd_if import IFImg2ImgPipeline, IFInpaintingPipeline, IFPipeline | |
from .kandinsky import ( | |
KandinskyCombinedPipeline, | |
KandinskyImg2ImgCombinedPipeline, | |
KandinskyImg2ImgPipeline, | |
KandinskyInpaintCombinedPipeline, | |
KandinskyInpaintPipeline, | |
KandinskyPipeline, | |
) | |
from .kandinsky2_2 import ( | |
KandinskyV22CombinedPipeline, | |
KandinskyV22Img2ImgCombinedPipeline, | |
KandinskyV22Img2ImgPipeline, | |
KandinskyV22InpaintCombinedPipeline, | |
KandinskyV22InpaintPipeline, | |
KandinskyV22Pipeline, | |
) | |
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline | |
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline | |
from .pixart_alpha import PixArtAlphaPipeline | |
from .stable_diffusion import ( | |
StableDiffusionImg2ImgPipeline, | |
StableDiffusionInpaintPipeline, | |
StableDiffusionPipeline, | |
) | |
from .stable_diffusion_xl import ( | |
StableDiffusionXLImg2ImgPipeline, | |
StableDiffusionXLInpaintPipeline, | |
StableDiffusionXLPipeline, | |
) | |
from .wuerstchen import WuerstchenCombinedPipeline, WuerstchenDecoderPipeline | |
AUTO_TEXT2IMAGE_PIPELINES_MAPPING = OrderedDict( | |
[ | |
("stable-diffusion", StableDiffusionPipeline), | |
("stable-diffusion-xl", StableDiffusionXLPipeline), | |
("if", IFPipeline), | |
("kandinsky", KandinskyCombinedPipeline), | |
("kandinsky22", KandinskyV22CombinedPipeline), | |
("kandinsky3", Kandinsky3Pipeline), | |
("stable-diffusion-controlnet", StableDiffusionControlNetPipeline), | |
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetPipeline), | |
("wuerstchen", WuerstchenCombinedPipeline), | |
("lcm", LatentConsistencyModelPipeline), | |
("pixart", PixArtAlphaPipeline), | |
] | |
) | |
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING = OrderedDict( | |
[ | |
("stable-diffusion", StableDiffusionImg2ImgPipeline), | |
("stable-diffusion-xl", StableDiffusionXLImg2ImgPipeline), | |
("if", IFImg2ImgPipeline), | |
("kandinsky", KandinskyImg2ImgCombinedPipeline), | |
("kandinsky22", KandinskyV22Img2ImgCombinedPipeline), | |
("kandinsky3", Kandinsky3Img2ImgPipeline), | |
("stable-diffusion-controlnet", StableDiffusionControlNetImg2ImgPipeline), | |
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetImg2ImgPipeline), | |
("lcm", LatentConsistencyModelImg2ImgPipeline), | |
] | |
) | |
AUTO_INPAINT_PIPELINES_MAPPING = OrderedDict( | |
[ | |
("stable-diffusion", StableDiffusionInpaintPipeline), | |
("stable-diffusion-xl", StableDiffusionXLInpaintPipeline), | |
("if", IFInpaintingPipeline), | |
("kandinsky", KandinskyInpaintCombinedPipeline), | |
("kandinsky22", KandinskyV22InpaintCombinedPipeline), | |
("stable-diffusion-controlnet", StableDiffusionControlNetInpaintPipeline), | |
("stable-diffusion-xl-controlnet", StableDiffusionXLControlNetInpaintPipeline), | |
] | |
) | |
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict( | |
[ | |
("kandinsky", KandinskyPipeline), | |
("kandinsky22", KandinskyV22Pipeline), | |
("wuerstchen", WuerstchenDecoderPipeline), | |
] | |
) | |
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING = OrderedDict( | |
[ | |
("kandinsky", KandinskyImg2ImgPipeline), | |
("kandinsky22", KandinskyV22Img2ImgPipeline), | |
] | |
) | |
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING = OrderedDict( | |
[ | |
("kandinsky", KandinskyInpaintPipeline), | |
("kandinsky22", KandinskyV22InpaintPipeline), | |
] | |
) | |
SUPPORTED_TASKS_MAPPINGS = [ | |
AUTO_TEXT2IMAGE_PIPELINES_MAPPING, | |
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, | |
AUTO_INPAINT_PIPELINES_MAPPING, | |
_AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING, | |
_AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING, | |
_AUTO_INPAINT_DECODER_PIPELINES_MAPPING, | |
] | |
def _get_connected_pipeline(pipeline_cls): | |
# for now connected pipelines can only be loaded from decoder pipelines, such as kandinsky-community/kandinsky-2-2-decoder | |
if pipeline_cls in _AUTO_TEXT2IMAGE_DECODER_PIPELINES_MAPPING.values(): | |
return _get_task_class( | |
AUTO_TEXT2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False | |
) | |
if pipeline_cls in _AUTO_IMAGE2IMAGE_DECODER_PIPELINES_MAPPING.values(): | |
return _get_task_class( | |
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False | |
) | |
if pipeline_cls in _AUTO_INPAINT_DECODER_PIPELINES_MAPPING.values(): | |
return _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, pipeline_cls.__name__, throw_error_if_not_exist=False) | |
def _get_task_class(mapping, pipeline_class_name, throw_error_if_not_exist: bool = True): | |
def get_model(pipeline_class_name): | |
for task_mapping in SUPPORTED_TASKS_MAPPINGS: | |
for model_name, pipeline in task_mapping.items(): | |
if pipeline.__name__ == pipeline_class_name: | |
return model_name | |
model_name = get_model(pipeline_class_name) | |
if model_name is not None: | |
task_class = mapping.get(model_name, None) | |
if task_class is not None: | |
return task_class | |
if throw_error_if_not_exist: | |
raise ValueError(f"AutoPipeline can't find a pipeline linked to {pipeline_class_name} for {model_name}") | |
class AutoPipelineForText2Image(ConfigMixin): | |
r""" | |
[`AutoPipelineForText2Image`] is a generic pipeline class that instantiates a text-to-image pipeline class. The | |
specific underlying pipeline class is automatically selected from either the | |
[`~AutoPipelineForText2Image.from_pretrained`] or [`~AutoPipelineForText2Image.from_pipe`] methods. | |
This class cannot be instantiated using `__init__()` (throws an error). | |
Class attributes: | |
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the | |
diffusion pipeline's components. | |
""" | |
config_name = "model_index.json" | |
def __init__(self, *args, **kwargs): | |
raise EnvironmentError( | |
f"{self.__class__.__name__} is designed to be instantiated " | |
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " | |
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods." | |
) | |
def from_pretrained(cls, pretrained_model_or_path, **kwargs): | |
r""" | |
Instantiates a text-to-image Pytorch diffusion pipeline from pretrained pipeline weight. | |
The from_pretrained() method takes care of returning the correct pipeline class instance by: | |
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its | |
config object | |
2. Find the text-to-image pipeline linked to the pipeline class using pattern matching on pipeline class | |
name. | |
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetPipeline`] object. | |
The pipeline is set in evaluation mode (`model.eval()`) by default. | |
If you get the error message below, you need to finetune the weights for your downstream task: | |
``` | |
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
``` | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline | |
hosted on the Hub. | |
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights | |
saved using | |
[`~DiffusionPipeline.save_pretrained`]. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
incompletely downloaded files are deleted. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
custom_revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to | |
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a | |
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub. | |
mirror (`str`, *optional*): | |
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not | |
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
information. | |
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
A map that specifies where each submodule should go. It doesn’t need to be defined for each | |
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
same device. | |
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
more information about each option see [designing a device | |
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
max_memory (`Dict`, *optional*): | |
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
each GPU and the available CPU RAM if unset. | |
offload_folder (`str` or `os.PathLike`, *optional*): | |
The path to offload weights if device_map contains the value `"disk"`. | |
offload_state_dict (`bool`, *optional*): | |
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
when there is some disk offload. | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
argument to `True` will raise an error. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
weights. If set to `False`, safetensors weights are not loaded. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | |
class). The overwritten components are passed directly to the pipelines `__init__` method. See example | |
below for more information. | |
variant (`str`, *optional*): | |
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when | |
loading `from_flax`. | |
<Tip> | |
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with | |
`huggingface-cli login`. | |
</Tip> | |
Examples: | |
```py | |
>>> from diffusers import AutoPipelineForText2Image | |
>>> pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5") | |
>>> image = pipeline(prompt).images[0] | |
``` | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
load_config_kwargs = { | |
"cache_dir": cache_dir, | |
"force_download": force_download, | |
"resume_download": resume_download, | |
"proxies": proxies, | |
"token": token, | |
"local_files_only": local_files_only, | |
"revision": revision, | |
} | |
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) | |
orig_class_name = config["_class_name"] | |
if "controlnet" in kwargs: | |
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline") | |
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, orig_class_name) | |
kwargs = {**load_config_kwargs, **kwargs} | |
return text_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs) | |
def from_pipe(cls, pipeline, **kwargs): | |
r""" | |
Instantiates a text-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class. | |
The from_pipe() method takes care of returning the correct pipeline class instance by finding the text-to-image | |
pipeline linked to the pipeline class using pattern matching on pipeline class name. | |
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating | |
additional memory. | |
The pipeline is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pipeline (`DiffusionPipeline`): | |
an instantiated `DiffusionPipeline` object | |
```py | |
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image | |
>>> pipe_i2i = AutoPipelineForImage2Image.from_pretrained( | |
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False | |
... ) | |
>>> pipe_t2i = AutoPipelineForText2Image.from_pipe(pipe_i2i) | |
>>> image = pipe_t2i(prompt).images[0] | |
``` | |
""" | |
original_config = dict(pipeline.config) | |
original_cls_name = pipeline.__class__.__name__ | |
# derive the pipeline class to instantiate | |
text_2_image_cls = _get_task_class(AUTO_TEXT2IMAGE_PIPELINES_MAPPING, original_cls_name) | |
if "controlnet" in kwargs: | |
if kwargs["controlnet"] is not None: | |
text_2_image_cls = _get_task_class( | |
AUTO_TEXT2IMAGE_PIPELINES_MAPPING, | |
text_2_image_cls.__name__.replace("ControlNet", "").replace("Pipeline", "ControlNetPipeline"), | |
) | |
else: | |
text_2_image_cls = _get_task_class( | |
AUTO_TEXT2IMAGE_PIPELINES_MAPPING, | |
text_2_image_cls.__name__.replace("ControlNetPipeline", "Pipeline"), | |
) | |
# define expected module and optional kwargs given the pipeline signature | |
expected_modules, optional_kwargs = text_2_image_cls._get_signature_keys(text_2_image_cls) | |
pretrained_model_name_or_path = original_config.pop("_name_or_path", None) | |
# allow users pass modules in `kwargs` to override the original pipeline's components | |
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
original_class_obj = { | |
k: pipeline.components[k] | |
for k, v in pipeline.components.items() | |
if k in expected_modules and k not in passed_class_obj | |
} | |
# allow users pass optional kwargs to override the original pipelines config attribute | |
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
original_pipe_kwargs = { | |
k: original_config[k] | |
for k, v in original_config.items() | |
if k in optional_kwargs and k not in passed_pipe_kwargs | |
} | |
# config that were not expected by original pipeline is stored as private attribute | |
# we will pass them as optional arguments if they can be accepted by the pipeline | |
additional_pipe_kwargs = [ | |
k[1:] | |
for k in original_config.keys() | |
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs | |
] | |
for k in additional_pipe_kwargs: | |
original_pipe_kwargs[k] = original_config.pop(f"_{k}") | |
text_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} | |
# store unused config as private attribute | |
unused_original_config = { | |
f"{'' if k.startswith('_') else '_'}{k}": original_config[k] | |
for k, v in original_config.items() | |
if k not in text_2_image_kwargs | |
} | |
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(text_2_image_kwargs.keys()) | |
if len(missing_modules) > 0: | |
raise ValueError( | |
f"Pipeline {text_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed" | |
) | |
model = text_2_image_cls(**text_2_image_kwargs) | |
model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
model.register_to_config(**unused_original_config) | |
return model | |
class AutoPipelineForImage2Image(ConfigMixin): | |
r""" | |
[`AutoPipelineForImage2Image`] is a generic pipeline class that instantiates an image-to-image pipeline class. The | |
specific underlying pipeline class is automatically selected from either the | |
[`~AutoPipelineForImage2Image.from_pretrained`] or [`~AutoPipelineForImage2Image.from_pipe`] methods. | |
This class cannot be instantiated using `__init__()` (throws an error). | |
Class attributes: | |
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the | |
diffusion pipeline's components. | |
""" | |
config_name = "model_index.json" | |
def __init__(self, *args, **kwargs): | |
raise EnvironmentError( | |
f"{self.__class__.__name__} is designed to be instantiated " | |
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " | |
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods." | |
) | |
def from_pretrained(cls, pretrained_model_or_path, **kwargs): | |
r""" | |
Instantiates a image-to-image Pytorch diffusion pipeline from pretrained pipeline weight. | |
The from_pretrained() method takes care of returning the correct pipeline class instance by: | |
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its | |
config object | |
2. Find the image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class | |
name. | |
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetImg2ImgPipeline`] | |
object. | |
The pipeline is set in evaluation mode (`model.eval()`) by default. | |
If you get the error message below, you need to finetune the weights for your downstream task: | |
``` | |
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
``` | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline | |
hosted on the Hub. | |
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights | |
saved using | |
[`~DiffusionPipeline.save_pretrained`]. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
incompletely downloaded files are deleted. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
custom_revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to | |
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a | |
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub. | |
mirror (`str`, *optional*): | |
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not | |
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
information. | |
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
A map that specifies where each submodule should go. It doesn’t need to be defined for each | |
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
same device. | |
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
more information about each option see [designing a device | |
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
max_memory (`Dict`, *optional*): | |
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
each GPU and the available CPU RAM if unset. | |
offload_folder (`str` or `os.PathLike`, *optional*): | |
The path to offload weights if device_map contains the value `"disk"`. | |
offload_state_dict (`bool`, *optional*): | |
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
when there is some disk offload. | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
argument to `True` will raise an error. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
weights. If set to `False`, safetensors weights are not loaded. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | |
class). The overwritten components are passed directly to the pipelines `__init__` method. See example | |
below for more information. | |
variant (`str`, *optional*): | |
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when | |
loading `from_flax`. | |
<Tip> | |
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with | |
`huggingface-cli login`. | |
</Tip> | |
Examples: | |
```py | |
>>> from diffusers import AutoPipelineForImage2Image | |
>>> pipeline = AutoPipelineForImage2Image.from_pretrained("runwayml/stable-diffusion-v1-5") | |
>>> image = pipeline(prompt, image).images[0] | |
``` | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
load_config_kwargs = { | |
"cache_dir": cache_dir, | |
"force_download": force_download, | |
"resume_download": resume_download, | |
"proxies": proxies, | |
"token": token, | |
"local_files_only": local_files_only, | |
"revision": revision, | |
} | |
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) | |
orig_class_name = config["_class_name"] | |
if "controlnet" in kwargs: | |
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline") | |
image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, orig_class_name) | |
kwargs = {**load_config_kwargs, **kwargs} | |
return image_2_image_cls.from_pretrained(pretrained_model_or_path, **kwargs) | |
def from_pipe(cls, pipeline, **kwargs): | |
r""" | |
Instantiates a image-to-image Pytorch diffusion pipeline from another instantiated diffusion pipeline class. | |
The from_pipe() method takes care of returning the correct pipeline class instance by finding the | |
image-to-image pipeline linked to the pipeline class using pattern matching on pipeline class name. | |
All the modules the pipeline contains will be used to initialize the new pipeline without reallocating | |
additional memory. | |
The pipeline is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pipeline (`DiffusionPipeline`): | |
an instantiated `DiffusionPipeline` object | |
Examples: | |
```py | |
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image | |
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained( | |
... "runwayml/stable-diffusion-v1-5", requires_safety_checker=False | |
... ) | |
>>> pipe_i2i = AutoPipelineForImage2Image.from_pipe(pipe_t2i) | |
>>> image = pipe_i2i(prompt, image).images[0] | |
``` | |
""" | |
original_config = dict(pipeline.config) | |
original_cls_name = pipeline.__class__.__name__ | |
# derive the pipeline class to instantiate | |
image_2_image_cls = _get_task_class(AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, original_cls_name) | |
if "controlnet" in kwargs: | |
if kwargs["controlnet"] is not None: | |
image_2_image_cls = _get_task_class( | |
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, | |
image_2_image_cls.__name__.replace("ControlNet", "").replace( | |
"Img2ImgPipeline", "ControlNetImg2ImgPipeline" | |
), | |
) | |
else: | |
image_2_image_cls = _get_task_class( | |
AUTO_IMAGE2IMAGE_PIPELINES_MAPPING, | |
image_2_image_cls.__name__.replace("ControlNetImg2ImgPipeline", "Img2ImgPipeline"), | |
) | |
# define expected module and optional kwargs given the pipeline signature | |
expected_modules, optional_kwargs = image_2_image_cls._get_signature_keys(image_2_image_cls) | |
pretrained_model_name_or_path = original_config.pop("_name_or_path", None) | |
# allow users pass modules in `kwargs` to override the original pipeline's components | |
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
original_class_obj = { | |
k: pipeline.components[k] | |
for k, v in pipeline.components.items() | |
if k in expected_modules and k not in passed_class_obj | |
} | |
# allow users pass optional kwargs to override the original pipelines config attribute | |
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
original_pipe_kwargs = { | |
k: original_config[k] | |
for k, v in original_config.items() | |
if k in optional_kwargs and k not in passed_pipe_kwargs | |
} | |
# config attribute that were not expected by original pipeline is stored as its private attribute | |
# we will pass them as optional arguments if they can be accepted by the pipeline | |
additional_pipe_kwargs = [ | |
k[1:] | |
for k in original_config.keys() | |
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs | |
] | |
for k in additional_pipe_kwargs: | |
original_pipe_kwargs[k] = original_config.pop(f"_{k}") | |
image_2_image_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} | |
# store unused config as private attribute | |
unused_original_config = { | |
f"{'' if k.startswith('_') else '_'}{k}": original_config[k] | |
for k, v in original_config.items() | |
if k not in image_2_image_kwargs | |
} | |
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(image_2_image_kwargs.keys()) | |
if len(missing_modules) > 0: | |
raise ValueError( | |
f"Pipeline {image_2_image_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed" | |
) | |
model = image_2_image_cls(**image_2_image_kwargs) | |
model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
model.register_to_config(**unused_original_config) | |
return model | |
class AutoPipelineForInpainting(ConfigMixin): | |
r""" | |
[`AutoPipelineForInpainting`] is a generic pipeline class that instantiates an inpainting pipeline class. The | |
specific underlying pipeline class is automatically selected from either the | |
[`~AutoPipelineForInpainting.from_pretrained`] or [`~AutoPipelineForInpainting.from_pipe`] methods. | |
This class cannot be instantiated using `__init__()` (throws an error). | |
Class attributes: | |
- **config_name** (`str`) -- The configuration filename that stores the class and module names of all the | |
diffusion pipeline's components. | |
""" | |
config_name = "model_index.json" | |
def __init__(self, *args, **kwargs): | |
raise EnvironmentError( | |
f"{self.__class__.__name__} is designed to be instantiated " | |
f"using the `{self.__class__.__name__}.from_pretrained(pretrained_model_name_or_path)` or " | |
f"`{self.__class__.__name__}.from_pipe(pipeline)` methods." | |
) | |
def from_pretrained(cls, pretrained_model_or_path, **kwargs): | |
r""" | |
Instantiates a inpainting Pytorch diffusion pipeline from pretrained pipeline weight. | |
The from_pretrained() method takes care of returning the correct pipeline class instance by: | |
1. Detect the pipeline class of the pretrained_model_or_path based on the _class_name property of its | |
config object | |
2. Find the inpainting pipeline linked to the pipeline class using pattern matching on pipeline class name. | |
If a `controlnet` argument is passed, it will instantiate a [`StableDiffusionControlNetInpaintPipeline`] | |
object. | |
The pipeline is set in evaluation mode (`model.eval()`) by default. | |
If you get the error message below, you need to finetune the weights for your downstream task: | |
``` | |
Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match: | |
- conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated | |
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. | |
``` | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline | |
hosted on the Hub. | |
- A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights | |
saved using | |
[`~DiffusionPipeline.save_pretrained`]. | |
torch_dtype (`str` or `torch.dtype`, *optional*): | |
Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the | |
dtype is automatically derived from the model's weights. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache | |
is not used. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to resume downloading the model weights and configuration files. If set to `False`, any | |
incompletely downloaded files are deleted. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only (`bool`, *optional*, defaults to `False`): | |
Whether to only load local model weights and configuration files or not. If set to `True`, the model | |
won't be downloaded from the Hub. | |
token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from | |
`diffusers-cli login` (stored in `~/.huggingface`) is used. | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier | |
allowed by Git. | |
custom_revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id similar to | |
`revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a | |
custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub. | |
mirror (`str`, *optional*): | |
Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not | |
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more | |
information. | |
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*): | |
A map that specifies where each submodule should go. It doesn’t need to be defined for each | |
parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the | |
same device. | |
Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For | |
more information about each option see [designing a device | |
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map). | |
max_memory (`Dict`, *optional*): | |
A dictionary device identifier for the maximum memory. Will default to the maximum memory available for | |
each GPU and the available CPU RAM if unset. | |
offload_folder (`str` or `os.PathLike`, *optional*): | |
The path to offload weights if device_map contains the value `"disk"`. | |
offload_state_dict (`bool`, *optional*): | |
If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if | |
the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True` | |
when there is some disk offload. | |
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`): | |
Speed up model loading only loading the pretrained weights and not initializing the weights. This also | |
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model. | |
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this | |
argument to `True` will raise an error. | |
use_safetensors (`bool`, *optional*, defaults to `None`): | |
If set to `None`, the safetensors weights are downloaded if they're available **and** if the | |
safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors | |
weights. If set to `False`, safetensors weights are not loaded. | |
kwargs (remaining dictionary of keyword arguments, *optional*): | |
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline | |
class). The overwritten components are passed directly to the pipelines `__init__` method. See example | |
below for more information. | |
variant (`str`, *optional*): | |
Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when | |
loading `from_flax`. | |
<Tip> | |
To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with | |
`huggingface-cli login`. | |
</Tip> | |
Examples: | |
```py | |
>>> from diffusers import AutoPipelineForInpainting | |
>>> pipeline = AutoPipelineForInpainting.from_pretrained("runwayml/stable-diffusion-v1-5") | |
>>> image = pipeline(prompt, image=init_image, mask_image=mask_image).images[0] | |
``` | |
""" | |
cache_dir = kwargs.pop("cache_dir", None) | |
force_download = kwargs.pop("force_download", False) | |
resume_download = kwargs.pop("resume_download", False) | |
proxies = kwargs.pop("proxies", None) | |
token = kwargs.pop("token", None) | |
local_files_only = kwargs.pop("local_files_only", False) | |
revision = kwargs.pop("revision", None) | |
load_config_kwargs = { | |
"cache_dir": cache_dir, | |
"force_download": force_download, | |
"resume_download": resume_download, | |
"proxies": proxies, | |
"token": token, | |
"local_files_only": local_files_only, | |
"revision": revision, | |
} | |
config = cls.load_config(pretrained_model_or_path, **load_config_kwargs) | |
orig_class_name = config["_class_name"] | |
if "controlnet" in kwargs: | |
orig_class_name = config["_class_name"].replace("Pipeline", "ControlNetPipeline") | |
inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, orig_class_name) | |
kwargs = {**load_config_kwargs, **kwargs} | |
return inpainting_cls.from_pretrained(pretrained_model_or_path, **kwargs) | |
def from_pipe(cls, pipeline, **kwargs): | |
r""" | |
Instantiates a inpainting Pytorch diffusion pipeline from another instantiated diffusion pipeline class. | |
The from_pipe() method takes care of returning the correct pipeline class instance by finding the inpainting | |
pipeline linked to the pipeline class using pattern matching on pipeline class name. | |
All the modules the pipeline class contain will be used to initialize the new pipeline without reallocating | |
additional memory. | |
The pipeline is set in evaluation mode (`model.eval()`) by default. | |
Parameters: | |
pipeline (`DiffusionPipeline`): | |
an instantiated `DiffusionPipeline` object | |
Examples: | |
```py | |
>>> from diffusers import AutoPipelineForText2Image, AutoPipelineForInpainting | |
>>> pipe_t2i = AutoPipelineForText2Image.from_pretrained( | |
... "DeepFloyd/IF-I-XL-v1.0", requires_safety_checker=False | |
... ) | |
>>> pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_t2i) | |
>>> image = pipe_inpaint(prompt, image=init_image, mask_image=mask_image).images[0] | |
``` | |
""" | |
original_config = dict(pipeline.config) | |
original_cls_name = pipeline.__class__.__name__ | |
# derive the pipeline class to instantiate | |
inpainting_cls = _get_task_class(AUTO_INPAINT_PIPELINES_MAPPING, original_cls_name) | |
if "controlnet" in kwargs: | |
if kwargs["controlnet"] is not None: | |
inpainting_cls = _get_task_class( | |
AUTO_INPAINT_PIPELINES_MAPPING, | |
inpainting_cls.__name__.replace("ControlNet", "").replace( | |
"InpaintPipeline", "ControlNetInpaintPipeline" | |
), | |
) | |
else: | |
inpainting_cls = _get_task_class( | |
AUTO_INPAINT_PIPELINES_MAPPING, | |
inpainting_cls.__name__.replace("ControlNetInpaintPipeline", "InpaintPipeline"), | |
) | |
# define expected module and optional kwargs given the pipeline signature | |
expected_modules, optional_kwargs = inpainting_cls._get_signature_keys(inpainting_cls) | |
pretrained_model_name_or_path = original_config.pop("_name_or_path", None) | |
# allow users pass modules in `kwargs` to override the original pipeline's components | |
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} | |
original_class_obj = { | |
k: pipeline.components[k] | |
for k, v in pipeline.components.items() | |
if k in expected_modules and k not in passed_class_obj | |
} | |
# allow users pass optional kwargs to override the original pipelines config attribute | |
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} | |
original_pipe_kwargs = { | |
k: original_config[k] | |
for k, v in original_config.items() | |
if k in optional_kwargs and k not in passed_pipe_kwargs | |
} | |
# config that were not expected by original pipeline is stored as private attribute | |
# we will pass them as optional arguments if they can be accepted by the pipeline | |
additional_pipe_kwargs = [ | |
k[1:] | |
for k in original_config.keys() | |
if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs | |
] | |
for k in additional_pipe_kwargs: | |
original_pipe_kwargs[k] = original_config.pop(f"_{k}") | |
inpainting_kwargs = {**passed_class_obj, **original_class_obj, **passed_pipe_kwargs, **original_pipe_kwargs} | |
# store unused config as private attribute | |
unused_original_config = { | |
f"{'' if k.startswith('_') else '_'}{k}": original_config[k] | |
for k, v in original_config.items() | |
if k not in inpainting_kwargs | |
} | |
missing_modules = set(expected_modules) - set(pipeline._optional_components) - set(inpainting_kwargs.keys()) | |
if len(missing_modules) > 0: | |
raise ValueError( | |
f"Pipeline {inpainting_cls} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed" | |
) | |
model = inpainting_cls(**inpainting_kwargs) | |
model.register_to_config(_name_or_path=pretrained_model_name_or_path) | |
model.register_to_config(**unused_original_config) | |
return model | |