Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from unsloth import FastLanguageModel
|
| 4 |
+
from snac import SNAC
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
# Set device globally for the app
|
| 8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
+
|
| 10 |
+
# Load models (globally, once when app starts)
|
| 11 |
+
model_name = "sachin6624/orpheus-3b-0.1-ft-malayalam-3epoch"
|
| 12 |
+
print(f"Loading LLM {model_name} on {device}...")
|
| 13 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 14 |
+
model_name=model_name,
|
| 15 |
+
max_seq_length=2048,
|
| 16 |
+
dtype=None,
|
| 17 |
+
load_in_4bit=False, # Use True for 4-bit loading to reduce memory if needed
|
| 18 |
+
)
|
| 19 |
+
model.to(device)
|
| 20 |
+
FastLanguageModel.for_inference(model)
|
| 21 |
+
print("LLM loaded.")
|
| 22 |
+
|
| 23 |
+
print(f"Loading SNAC decoder on {device}...")
|
| 24 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
| 25 |
+
snac_model = snac_model.to(device)
|
| 26 |
+
# Explicitly define sample rate as the model name 'snac_24khz' suggests 24000 Hz
|
| 27 |
+
snac_model_sample_rate = 24000
|
| 28 |
+
print("SNAC decoder loaded. Assumed sample rate:", snac_model_sample_rate)
|
| 29 |
+
|
| 30 |
+
# Define tokens on the selected device
|
| 31 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64, device=device) # Start of human
|
| 32 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64, device=device) # End of text, End of human
|
| 33 |
+
token_to_find = 128257
|
| 34 |
+
token_to_remove = 128258
|
| 35 |
+
|
| 36 |
+
def redistribute_codes(code_list):
|
| 37 |
+
"""
|
| 38 |
+
Redistributes SNAC codes into layers and decodes them to audio.
|
| 39 |
+
`code_list` is expected to be a list of Python integers.
|
| 40 |
+
"""
|
| 41 |
+
if not code_list:
|
| 42 |
+
raise ValueError("Input code_list to redistribute_codes is empty.")
|
| 43 |
+
|
| 44 |
+
layer_1 = []
|
| 45 |
+
layer_2 = []
|
| 46 |
+
layer_3 = []
|
| 47 |
+
|
| 48 |
+
# Ensure there are enough codes to form full groups of 7
|
| 49 |
+
processed_len = (len(code_list) // 7) * 7
|
| 50 |
+
if processed_len == 0:
|
| 51 |
+
raise ValueError("code_list is too short to form any valid SNAC layers.")
|
| 52 |
+
|
| 53 |
+
for i in range(processed_len // 7):
|
| 54 |
+
base_idx = 7*i
|
| 55 |
+
layer_1.append(code_list[base_idx])
|
| 56 |
+
layer_2.append(code_list[base_idx+1]-4096)
|
| 57 |
+
layer_3.append(code_list[base_idx+2]-(2*4096))
|
| 58 |
+
layer_3.append(code_list[base_idx+3]-(3*4096))
|
| 59 |
+
layer_2.append(code_list[base_idx+4]-(4*4096))
|
| 60 |
+
layer_3.append(code_list[base_idx+5]-(5*4096))
|
| 61 |
+
layer_3.append(code_list[base_idx+6]-(6*4096))
|
| 62 |
+
|
| 63 |
+
# Convert lists of Python integers to torch tensors on the specified device
|
| 64 |
+
codes = [
|
| 65 |
+
torch.tensor(layer_1, dtype=torch.long, device=device).unsqueeze(0),
|
| 66 |
+
torch.tensor(layer_2, dtype=torch.long, device=device).unsqueeze(0),
|
| 67 |
+
torch.tensor(layer_3, dtype=torch.long, device=device).unsqueeze(0)
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
audio_hat = snac_model.decode(codes)
|
| 71 |
+
return audio_hat
|
| 72 |
+
|
| 73 |
+
def generate_audio(prompt: str):
|
| 74 |
+
"""
|
| 75 |
+
Generates audio from a given text prompt.
|
| 76 |
+
"""
|
| 77 |
+
if not prompt or not prompt.strip():
|
| 78 |
+
raise gr.Error("Please enter a valid text prompt.")
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
# Tokenize the prompt and prepare input_ids
|
| 82 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
| 83 |
+
# Concatenate start/end tokens to the input_ids
|
| 84 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
| 85 |
+
|
| 86 |
+
# Create an attention mask for the unpadded input
|
| 87 |
+
attention_mask = torch.ones_like(modified_input_ids, dtype=torch.long, device=device)
|
| 88 |
+
|
| 89 |
+
# Generate IDs using the model
|
| 90 |
+
generated_ids = model.generate(
|
| 91 |
+
input_ids=modified_input_ids,
|
| 92 |
+
attention_mask=attention_mask,
|
| 93 |
+
max_new_tokens=1200,
|
| 94 |
+
do_sample=True,
|
| 95 |
+
temperature=0.6,
|
| 96 |
+
top_p=0.95,
|
| 97 |
+
repetition_penalty=1.1,
|
| 98 |
+
num_return_sequences=1,
|
| 99 |
+
eos_token_id=128258,
|
| 100 |
+
use_cache = True
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Post-process generated_ids to extract SNAC codes
|
| 104 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
| 105 |
+
|
| 106 |
+
cropped_tensor = generated_ids
|
| 107 |
+
if len(token_indices[1]) > 0:
|
| 108 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
| 109 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
| 110 |
+
|
| 111 |
+
# Filter out token_to_remove (EOS token for generation)
|
| 112 |
+
processed_row_tensor = cropped_tensor[cropped_tensor != token_to_remove]
|
| 113 |
+
|
| 114 |
+
row_length = processed_row_tensor.size(0)
|
| 115 |
+
new_length = (row_length // 7) * 7 # Ensure length is a multiple of 7 for redistribution
|
| 116 |
+
|
| 117 |
+
if new_length == 0:
|
| 118 |
+
raise gr.Error("Generated response was too short to form valid audio codes. Try a different prompt or longer text.")
|
| 119 |
+
|
| 120 |
+
trimmed_row = processed_row_tensor[:new_length]
|
| 121 |
+
# Convert tensor elements to Python integers and apply offset
|
| 122 |
+
trimmed_row_list = [t.item() - 128266 for t in trimmed_row]
|
| 123 |
+
|
| 124 |
+
samples = redistribute_codes(trimmed_row_list)
|
| 125 |
+
audio_output = samples.detach().squeeze().to("cpu").numpy()
|
| 126 |
+
|
| 127 |
+
return (snac_model_sample_rate, audio_output)
|
| 128 |
+
|
| 129 |
+
except Exception as e:
|
| 130 |
+
raise gr.Error(f"An error occurred during audio generation: {e}")
|
| 131 |
+
|
| 132 |
+
# Gradio Interface setup
|
| 133 |
+
iface = gr.Interface(
|
| 134 |
+
fn=generate_audio,
|
| 135 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Text Prompt (Malayalam)"),
|
| 136 |
+
outputs=gr.Audio(label="Generated Audio", autoplay=True),
|
| 137 |
+
title="Malayalam Text-to-Speech (Orpheus-3B & SNAC)",
|
| 138 |
+
description="Generate speech from Malayalam text using the fine-tuned Orpheus-3B model and SNAC for audio generation.",
|
| 139 |
+
examples=[["എങ്ങനെയുണ്ട് എന്റെ കുട്ടി?, <giggles>."],
|
| 140 |
+
["നമസ്കാരം, നിങ്ങൾക്ക് സുഖമാണോ?"]],
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
# Use flagging_mode instead of allow_flagging for Gradio 4.0+
|
| 144 |
+
iface.flagging_mode = 'never'
|
| 145 |
+
|
| 146 |
+
# Launch the Gradio app if the script is run directly
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
iface.launch()
|