Spaces:
Runtime error
Runtime error
benliang99
commited on
Commit
•
cfabf1c
1
Parent(s):
f59b608
Added finetuned model
Browse filesCheckpoints in /results/ folder
- .ipynb_checkpoints/finetunehupd-checkpoint.ipynb +51 -0
- .ipynb_checkpoints/finetunehupd-checkpoint.py +92 -0
- finetunehupd.ipynb +1293 -0
- finetunehupd.py +92 -0
.ipynb_checkpoints/finetunehupd-checkpoint.ipynb
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "1df3c609-62a6-49c3-bcc6-29c520f9501c",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# -*- coding: utf-8 -*-\n",
|
11 |
+
"\"\"\"FinetuneHUPD.ipynb\n",
|
12 |
+
"\n",
|
13 |
+
"Automatically generated by Colaboratory.\n",
|
14 |
+
"\n",
|
15 |
+
"Original file is located at\n",
|
16 |
+
" https://colab.research.google.com/drive/17c2CQZx_kyD3-0fuQqv_pCMJ0Evd7fLN\n",
|
17 |
+
"\"\"\"\n",
|
18 |
+
"\n",
|
19 |
+
"# Pretty print\n",
|
20 |
+
"from pprint import pprint\n",
|
21 |
+
"# Datasets load_dataset function\n",
|
22 |
+
"from datasets import load_dataset\n",
|
23 |
+
"# Transformers Autokenizer\n",
|
24 |
+
"from transformers import AutoTokenizer, DistilBertForSequenceClassification, DistilBertTokenizer, Trainer, TrainingArguments, AdamW\n",
|
25 |
+
"from torch.utils.data import DataLoader\n",
|
26 |
+
"import torch"
|
27 |
+
]
|
28 |
+
}
|
29 |
+
],
|
30 |
+
"metadata": {
|
31 |
+
"kernelspec": {
|
32 |
+
"display_name": "Python 3 (ipykernel)",
|
33 |
+
"language": "python",
|
34 |
+
"name": "python3"
|
35 |
+
},
|
36 |
+
"language_info": {
|
37 |
+
"codemirror_mode": {
|
38 |
+
"name": "ipython",
|
39 |
+
"version": 3
|
40 |
+
},
|
41 |
+
"file_extension": ".py",
|
42 |
+
"mimetype": "text/x-python",
|
43 |
+
"name": "python",
|
44 |
+
"nbconvert_exporter": "python",
|
45 |
+
"pygments_lexer": "ipython3",
|
46 |
+
"version": "3.9.16"
|
47 |
+
}
|
48 |
+
},
|
49 |
+
"nbformat": 4,
|
50 |
+
"nbformat_minor": 5
|
51 |
+
}
|
.ipynb_checkpoints/finetunehupd-checkpoint.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""FinetuneHUPD.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/17c2CQZx_kyD3-0fuQqv_pCMJ0Evd7fLN
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Pretty print
|
11 |
+
from pprint import pprint
|
12 |
+
# Datasets load_dataset function
|
13 |
+
from datasets import load_dataset
|
14 |
+
# Transformers Autokenizer
|
15 |
+
from transformers import AutoTokenizer, DistilBertForSequenceClassification, DistilBertTokenizer, Trainer, TrainingArguments, AdamW
|
16 |
+
from torch.utils.data import DataLoader
|
17 |
+
import torch
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
|
20 |
+
|
21 |
+
dataset_dict = load_dataset('HUPD/hupd',
|
22 |
+
name='sample',
|
23 |
+
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
|
24 |
+
icpr_label=None,
|
25 |
+
train_filing_start_date='2016-01-01',
|
26 |
+
train_filing_end_date='2016-01-31',
|
27 |
+
val_filing_start_date='2016-01-01',
|
28 |
+
val_filing_end_date='2016-01-31',
|
29 |
+
)
|
30 |
+
|
31 |
+
print('Loading is done!')
|
32 |
+
|
33 |
+
# Label-to-index mapping for the decision status field
|
34 |
+
decision_to_str = {'REJECTED': 0, 'ACCEPTED': 1, 'PENDING': 2, 'CONT-REJECTED': 3, 'CONT-ACCEPTED': 4, 'CONT-PENDING': 5}
|
35 |
+
|
36 |
+
# Helper function
|
37 |
+
def map_decision_to_string(example):
|
38 |
+
return {'decision': decision_to_str[example['decision']]}
|
39 |
+
|
40 |
+
# Re-labeling/mapping.
|
41 |
+
train_set = dataset_dict['train'].map(map_decision_to_string)
|
42 |
+
val_set = dataset_dict['validation'].map(map_decision_to_string)
|
43 |
+
|
44 |
+
# Focus on the abstract section and tokenize the text using the tokenizer.
|
45 |
+
_SECTION_ = 'abstract'
|
46 |
+
|
47 |
+
# Training set
|
48 |
+
train_set = train_set.map(
|
49 |
+
lambda e: tokenizer((e[_SECTION_]), truncation=True, padding='max_length'),
|
50 |
+
batched=True)
|
51 |
+
|
52 |
+
# Validation set
|
53 |
+
val_set = val_set.map(
|
54 |
+
lambda e: tokenizer((e[_SECTION_]), truncation=True, padding='max_length'),
|
55 |
+
batched=True)
|
56 |
+
|
57 |
+
# Set the format
|
58 |
+
train_set.set_format(type='torch',
|
59 |
+
columns=['input_ids', 'attention_mask', 'decision'])
|
60 |
+
|
61 |
+
val_set.set_format(type='torch',
|
62 |
+
columns=['input_ids', 'attention_mask', 'decision'])
|
63 |
+
|
64 |
+
#print(train_set['decision'])
|
65 |
+
|
66 |
+
# train_dataloader and val_data_loader
|
67 |
+
train_dataloader = DataLoader(train_set, batch_size=16)
|
68 |
+
val_dataloader = DataLoader(val_set, batch_size=16)
|
69 |
+
|
70 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
71 |
+
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
72 |
+
model.to(device)
|
73 |
+
print(device)
|
74 |
+
print("torch cuda is avail: ")
|
75 |
+
print(torch.cuda.is_available())
|
76 |
+
model.train()
|
77 |
+
optim = AdamW(model.parameters(), lr=5e-5)
|
78 |
+
num_training_epochs = 2
|
79 |
+
|
80 |
+
for epoch in range(num_training_epochs):
|
81 |
+
for batch in train_dataloader:
|
82 |
+
optim.zero_grad()
|
83 |
+
input_ids = batch['input_ids'].to(device)
|
84 |
+
attention_mask = batch['attention_mask'].to(device)
|
85 |
+
labels = batch['decision'].to(device)
|
86 |
+
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
87 |
+
loss = outputs[0]
|
88 |
+
loss.backward()
|
89 |
+
optim.step()
|
90 |
+
print("batch finished")
|
91 |
+
|
92 |
+
model.eval()
|
finetunehupd.ipynb
ADDED
@@ -0,0 +1,1293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "1df3c609-62a6-49c3-bcc6-29c520f9501c",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# Pretty print\n",
|
11 |
+
"from pprint import pprint\n",
|
12 |
+
"# Datasets load_dataset function\n",
|
13 |
+
"from datasets import load_dataset\n",
|
14 |
+
"# Transformers Autokenizer\n",
|
15 |
+
"from transformers import AutoTokenizer, DistilBertForSequenceClassification, DistilBertTokenizer, DistilBertTokenizerFast, Trainer, TrainingArguments, AdamW\n",
|
16 |
+
"from torch.utils.data import DataLoader\n",
|
17 |
+
"import torch"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
+
"id": "58167c28-eb27-4f82-b7d0-8216dbeaf650",
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [
|
26 |
+
{
|
27 |
+
"name": "stderr",
|
28 |
+
"output_type": "stream",
|
29 |
+
"text": [
|
30 |
+
"Found cached dataset hupd (C:/Users/calia/.cache/huggingface/datasets/HUPD___hupd/sample-5094df4de61ed3bc/0.0.0/6920d2def8fd7767046c0470603357f76866e5a09c97e19571896bfdca521142)\n"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"data": {
|
35 |
+
"application/vnd.jupyter.widget-view+json": {
|
36 |
+
"model_id": "345008775bf549b5a548948949710507",
|
37 |
+
"version_major": 2,
|
38 |
+
"version_minor": 0
|
39 |
+
},
|
40 |
+
"text/plain": [
|
41 |
+
" 0%| | 0/2 [00:00<?, ?it/s]"
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"metadata": {},
|
45 |
+
"output_type": "display_data"
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"name": "stdout",
|
49 |
+
"output_type": "stream",
|
50 |
+
"text": [
|
51 |
+
"Loading is done!\n"
|
52 |
+
]
|
53 |
+
}
|
54 |
+
],
|
55 |
+
"source": [
|
56 |
+
"tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased')\n",
|
57 |
+
"\n",
|
58 |
+
"dataset_dict = load_dataset('HUPD/hupd',\n",
|
59 |
+
" name='sample',\n",
|
60 |
+
" data_files=\"https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather\", \n",
|
61 |
+
" icpr_label=None,\n",
|
62 |
+
" train_filing_start_date='2016-01-01',\n",
|
63 |
+
" train_filing_end_date='2016-01-21',\n",
|
64 |
+
" val_filing_start_date='2016-01-22',\n",
|
65 |
+
" val_filing_end_date='2016-01-31',\n",
|
66 |
+
")\n",
|
67 |
+
"\n",
|
68 |
+
"print('Loading is done!')"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": 3,
|
74 |
+
"id": "e13c6ad1-a7f2-4806-80a2-e9c4655e1eed",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [
|
77 |
+
{
|
78 |
+
"name": "stderr",
|
79 |
+
"output_type": "stream",
|
80 |
+
"text": [
|
81 |
+
"Loading cached processed dataset at C:\\Users\\calia\\.cache\\huggingface\\datasets\\HUPD___hupd\\sample-5094df4de61ed3bc\\0.0.0\\6920d2def8fd7767046c0470603357f76866e5a09c97e19571896bfdca521142\\cache-9f7788eb9924fd62.arrow\n",
|
82 |
+
"Loading cached processed dataset at C:\\Users\\calia\\.cache\\huggingface\\datasets\\HUPD___hupd\\sample-5094df4de61ed3bc\\0.0.0\\6920d2def8fd7767046c0470603357f76866e5a09c97e19571896bfdca521142\\cache-6c3687322fe5b556.arrow\n",
|
83 |
+
"Loading cached processed dataset at C:\\Users\\calia\\.cache\\huggingface\\datasets\\HUPD___hupd\\sample-5094df4de61ed3bc\\0.0.0\\6920d2def8fd7767046c0470603357f76866e5a09c97e19571896bfdca521142\\cache-bd3b1eee4495f3ce.arrow\n"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"data": {
|
88 |
+
"application/vnd.jupyter.widget-view+json": {
|
89 |
+
"model_id": "",
|
90 |
+
"version_major": 2,
|
91 |
+
"version_minor": 0
|
92 |
+
},
|
93 |
+
"text/plain": [
|
94 |
+
"Map: 0%| | 0/9094 [00:00<?, ? examples/s]"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
"metadata": {},
|
98 |
+
"output_type": "display_data"
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"source": [
|
102 |
+
"# Label-to-index mapping for the decision status field\n",
|
103 |
+
"decision_to_str = {'REJECTED': 0, 'ACCEPTED': 1, 'PENDING': 0, 'CONT-REJECTED': 0, 'CONT-ACCEPTED': 0, 'CONT-PENDING': 0}\n",
|
104 |
+
"\n",
|
105 |
+
"# Helper function\n",
|
106 |
+
"def map_decision_to_string(example):\n",
|
107 |
+
" return {'decision': decision_to_str[example['decision']]}\n",
|
108 |
+
"\n",
|
109 |
+
"# Re-labeling/mapping.\n",
|
110 |
+
"train_set = dataset_dict['train'].map(map_decision_to_string)\n",
|
111 |
+
"val_set = dataset_dict['validation'].map(map_decision_to_string)\n",
|
112 |
+
"\n",
|
113 |
+
"# Focus on the abstract section and tokenize the text using the tokenizer. \n",
|
114 |
+
"_SECTION_ = 'abstract'\n",
|
115 |
+
"\n",
|
116 |
+
"# Training set\n",
|
117 |
+
"train_set = train_set.map(\n",
|
118 |
+
" lambda e: tokenizer((e[_SECTION_]), truncation=True, padding='max_length'),\n",
|
119 |
+
" batched=True)\n",
|
120 |
+
"\n",
|
121 |
+
"# Validation set\n",
|
122 |
+
"val_set = val_set.map(\n",
|
123 |
+
" lambda e: tokenizer((e[_SECTION_]), truncation=True, padding='max_length'),\n",
|
124 |
+
" batched=True)"
|
125 |
+
]
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"cell_type": "code",
|
129 |
+
"execution_count": 4,
|
130 |
+
"id": "b5c098be-019b-42ce-9b80-4f6de93ef6a3",
|
131 |
+
"metadata": {},
|
132 |
+
"outputs": [
|
133 |
+
{
|
134 |
+
"data": {
|
135 |
+
"text/plain": [
|
136 |
+
"Dataset({\n",
|
137 |
+
" features: ['patent_number', 'decision', 'title', 'abstract', 'claims', 'background', 'summary', 'description', 'cpc_label', 'ipc_label', 'filing_date', 'patent_issue_date', 'date_published', 'examiner_id', 'input_ids', 'attention_mask'],\n",
|
138 |
+
" num_rows: 16153\n",
|
139 |
+
"})"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
"execution_count": 4,
|
143 |
+
"metadata": {},
|
144 |
+
"output_type": "execute_result"
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"source": [
|
148 |
+
"train_set"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 5,
|
154 |
+
"id": "1e5a5390-19fe-4a73-b913-e3c1e2c2a399",
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [
|
157 |
+
{
|
158 |
+
"data": {
|
159 |
+
"text/plain": [
|
160 |
+
"Dataset({\n",
|
161 |
+
" features: ['patent_number', 'decision', 'title', 'abstract', 'claims', 'background', 'summary', 'description', 'cpc_label', 'ipc_label', 'filing_date', 'patent_issue_date', 'date_published', 'examiner_id', 'input_ids', 'attention_mask'],\n",
|
162 |
+
" num_rows: 9094\n",
|
163 |
+
"})"
|
164 |
+
]
|
165 |
+
},
|
166 |
+
"execution_count": 5,
|
167 |
+
"metadata": {},
|
168 |
+
"output_type": "execute_result"
|
169 |
+
}
|
170 |
+
],
|
171 |
+
"source": [
|
172 |
+
"val_set"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 6,
|
178 |
+
"id": "4fb69db8-86e5-4c6c-8ac6-853d3e15fb93",
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [],
|
181 |
+
"source": [
|
182 |
+
"train_set = train_set.remove_columns([\"patent_number\", \"title\", \"abstract\", \"claims\", \"background\", \"summary\", \"description\", \"cpc_label\", \"ipc_label\", \"filing_date\", \"patent_issue_date\", \"date_published\", \"examiner_id\"])\n",
|
183 |
+
"val_set = val_set.remove_columns([\"patent_number\", \"title\", \"abstract\", \"claims\", \"background\", \"summary\", \"description\", \"cpc_label\", \"ipc_label\", \"filing_date\", \"patent_issue_date\", \"date_published\", \"examiner_id\"])\n",
|
184 |
+
"\n",
|
185 |
+
"train_set = train_set.rename_column(\"decision\", \"labels\")\n",
|
186 |
+
"val_set = val_set.rename_column(\"decision\", \"labels\")"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": 7,
|
192 |
+
"id": "c0d17213-4b14-418c-980c-0238236096c2",
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [
|
195 |
+
{
|
196 |
+
"data": {
|
197 |
+
"text/plain": [
|
198 |
+
"Dataset({\n",
|
199 |
+
" features: ['labels', 'input_ids', 'attention_mask'],\n",
|
200 |
+
" num_rows: 16153\n",
|
201 |
+
"})"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
"execution_count": 7,
|
205 |
+
"metadata": {},
|
206 |
+
"output_type": "execute_result"
|
207 |
+
}
|
208 |
+
],
|
209 |
+
"source": [
|
210 |
+
"train_set"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "code",
|
215 |
+
"execution_count": 8,
|
216 |
+
"id": "da2f1c16-3ba4-4e56-9455-5cd838df4dcd",
|
217 |
+
"metadata": {},
|
218 |
+
"outputs": [
|
219 |
+
{
|
220 |
+
"data": {
|
221 |
+
"text/plain": [
|
222 |
+
"Dataset({\n",
|
223 |
+
" features: ['labels', 'input_ids', 'attention_mask'],\n",
|
224 |
+
" num_rows: 9094\n",
|
225 |
+
"})"
|
226 |
+
]
|
227 |
+
},
|
228 |
+
"execution_count": 8,
|
229 |
+
"metadata": {},
|
230 |
+
"output_type": "execute_result"
|
231 |
+
}
|
232 |
+
],
|
233 |
+
"source": [
|
234 |
+
"val_set"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"execution_count": 9,
|
240 |
+
"id": "cfb35702-863d-4fec-83e1-44c4e5668156",
|
241 |
+
"metadata": {},
|
242 |
+
"outputs": [],
|
243 |
+
"source": [
|
244 |
+
"# Set the format\n",
|
245 |
+
"train_set.set_format(type='torch', \n",
|
246 |
+
" columns=['labels', 'input_ids', 'attention_mask'])\n",
|
247 |
+
"\n",
|
248 |
+
"val_set.set_format(type='torch', \n",
|
249 |
+
" columns=['labels', 'input_ids', 'attention_mask'])"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"execution_count": 10,
|
255 |
+
"id": "d7ac796a-9f6e-4213-960f-e17837c27d87",
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"# train_dataloader and val_data_loader\n",
|
260 |
+
"train_dataloader = DataLoader(train_set, batch_size=16)\n",
|
261 |
+
"val_dataloader = DataLoader(val_set, batch_size=16)"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"cell_type": "code",
|
266 |
+
"execution_count": 11,
|
267 |
+
"id": "b3248182-fddb-46dc-addb-26981a881d99",
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [
|
270 |
+
{
|
271 |
+
"name": "stderr",
|
272 |
+
"output_type": "stream",
|
273 |
+
"text": [
|
274 |
+
"Some weights of the model checkpoint at distilbert-base-uncased were not used when initializing DistilBertForSequenceClassification: ['vocab_transform.bias', 'vocab_projector.weight', 'vocab_layer_norm.weight', 'vocab_projector.bias', 'vocab_transform.weight', 'vocab_layer_norm.bias']\n",
|
275 |
+
"- This IS expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
276 |
+
"- This IS NOT expected if you are initializing DistilBertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
277 |
+
"Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['pre_classifier.bias', 'pre_classifier.weight', 'classifier.bias', 'classifier.weight']\n",
|
278 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
279 |
+
]
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"name": "stdout",
|
283 |
+
"output_type": "stream",
|
284 |
+
"text": [
|
285 |
+
"cuda\n",
|
286 |
+
"torch cuda is avail: \n",
|
287 |
+
"True\n"
|
288 |
+
]
|
289 |
+
}
|
290 |
+
],
|
291 |
+
"source": [
|
292 |
+
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
|
293 |
+
"model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')\n",
|
294 |
+
"model.to(device)\n",
|
295 |
+
"print(device)\n",
|
296 |
+
"print(\"torch cuda is avail: \")\n",
|
297 |
+
"print(torch.cuda.is_available())"
|
298 |
+
]
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"cell_type": "markdown",
|
302 |
+
"id": "abb2cf74-3cd5-4ca5-af0e-b0ee80627f2a",
|
303 |
+
"metadata": {},
|
304 |
+
"source": [
|
305 |
+
"HuggingFace Trainer"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "code",
|
310 |
+
"execution_count": 12,
|
311 |
+
"id": "99947cf9-a6cd-490f-a81d-32f65fb3cd46",
|
312 |
+
"metadata": {},
|
313 |
+
"outputs": [],
|
314 |
+
"source": [
|
315 |
+
"training_args = TrainingArguments(\n",
|
316 |
+
" output_dir='./results/',\n",
|
317 |
+
" num_train_epochs=2,\n",
|
318 |
+
" per_device_train_batch_size=16,\n",
|
319 |
+
" per_device_eval_batch_size=16,\n",
|
320 |
+
" warmup_steps=500,\n",
|
321 |
+
" learning_rate=5e-5,\n",
|
322 |
+
" weight_decay=0.01,\n",
|
323 |
+
" logging_dir='./logs/',\n",
|
324 |
+
" logging_steps=10,\n",
|
325 |
+
")\n",
|
326 |
+
"\n",
|
327 |
+
"trainer = Trainer(\n",
|
328 |
+
" model=model,\n",
|
329 |
+
" args=training_args,\n",
|
330 |
+
" train_dataset=train_set,\n",
|
331 |
+
" eval_dataset=val_set,\n",
|
332 |
+
")"
|
333 |
+
]
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"cell_type": "code",
|
337 |
+
"execution_count": 13,
|
338 |
+
"id": "be865f1d-f29b-4306-8570-900386ac4570",
|
339 |
+
"metadata": {},
|
340 |
+
"outputs": [
|
341 |
+
{
|
342 |
+
"name": "stderr",
|
343 |
+
"output_type": "stream",
|
344 |
+
"text": [
|
345 |
+
"C:\\Users\\calia\\anaconda3\\envs\\ai-finetuning-project\\lib\\site-packages\\transformers\\optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
346 |
+
" warnings.warn(\n",
|
347 |
+
"***** Running training *****\n",
|
348 |
+
" Num examples = 16153\n",
|
349 |
+
" Num Epochs = 2\n",
|
350 |
+
" Instantaneous batch size per device = 16\n",
|
351 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 16\n",
|
352 |
+
" Gradient Accumulation steps = 1\n",
|
353 |
+
" Total optimization steps = 2020\n",
|
354 |
+
" Number of trainable parameters = 66955010\n"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"data": {
|
359 |
+
"text/html": [
|
360 |
+
"\n",
|
361 |
+
" <div>\n",
|
362 |
+
" \n",
|
363 |
+
" <progress value='2020' max='2020' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
364 |
+
" [2020/2020 11:47, Epoch 2/2]\n",
|
365 |
+
" </div>\n",
|
366 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
367 |
+
" <thead>\n",
|
368 |
+
" <tr style=\"text-align: left;\">\n",
|
369 |
+
" <th>Step</th>\n",
|
370 |
+
" <th>Training Loss</th>\n",
|
371 |
+
" </tr>\n",
|
372 |
+
" </thead>\n",
|
373 |
+
" <tbody>\n",
|
374 |
+
" <tr>\n",
|
375 |
+
" <td>10</td>\n",
|
376 |
+
" <td>0.692000</td>\n",
|
377 |
+
" </tr>\n",
|
378 |
+
" <tr>\n",
|
379 |
+
" <td>20</td>\n",
|
380 |
+
" <td>0.685100</td>\n",
|
381 |
+
" </tr>\n",
|
382 |
+
" <tr>\n",
|
383 |
+
" <td>30</td>\n",
|
384 |
+
" <td>0.684000</td>\n",
|
385 |
+
" </tr>\n",
|
386 |
+
" <tr>\n",
|
387 |
+
" <td>40</td>\n",
|
388 |
+
" <td>0.685100</td>\n",
|
389 |
+
" </tr>\n",
|
390 |
+
" <tr>\n",
|
391 |
+
" <td>50</td>\n",
|
392 |
+
" <td>0.678400</td>\n",
|
393 |
+
" </tr>\n",
|
394 |
+
" <tr>\n",
|
395 |
+
" <td>60</td>\n",
|
396 |
+
" <td>0.687300</td>\n",
|
397 |
+
" </tr>\n",
|
398 |
+
" <tr>\n",
|
399 |
+
" <td>70</td>\n",
|
400 |
+
" <td>0.681900</td>\n",
|
401 |
+
" </tr>\n",
|
402 |
+
" <tr>\n",
|
403 |
+
" <td>80</td>\n",
|
404 |
+
" <td>0.691100</td>\n",
|
405 |
+
" </tr>\n",
|
406 |
+
" <tr>\n",
|
407 |
+
" <td>90</td>\n",
|
408 |
+
" <td>0.683200</td>\n",
|
409 |
+
" </tr>\n",
|
410 |
+
" <tr>\n",
|
411 |
+
" <td>100</td>\n",
|
412 |
+
" <td>0.694100</td>\n",
|
413 |
+
" </tr>\n",
|
414 |
+
" <tr>\n",
|
415 |
+
" <td>110</td>\n",
|
416 |
+
" <td>0.673300</td>\n",
|
417 |
+
" </tr>\n",
|
418 |
+
" <tr>\n",
|
419 |
+
" <td>120</td>\n",
|
420 |
+
" <td>0.694100</td>\n",
|
421 |
+
" </tr>\n",
|
422 |
+
" <tr>\n",
|
423 |
+
" <td>130</td>\n",
|
424 |
+
" <td>0.669500</td>\n",
|
425 |
+
" </tr>\n",
|
426 |
+
" <tr>\n",
|
427 |
+
" <td>140</td>\n",
|
428 |
+
" <td>0.691100</td>\n",
|
429 |
+
" </tr>\n",
|
430 |
+
" <tr>\n",
|
431 |
+
" <td>150</td>\n",
|
432 |
+
" <td>0.683400</td>\n",
|
433 |
+
" </tr>\n",
|
434 |
+
" <tr>\n",
|
435 |
+
" <td>160</td>\n",
|
436 |
+
" <td>0.654900</td>\n",
|
437 |
+
" </tr>\n",
|
438 |
+
" <tr>\n",
|
439 |
+
" <td>170</td>\n",
|
440 |
+
" <td>0.684300</td>\n",
|
441 |
+
" </tr>\n",
|
442 |
+
" <tr>\n",
|
443 |
+
" <td>180</td>\n",
|
444 |
+
" <td>0.679300</td>\n",
|
445 |
+
" </tr>\n",
|
446 |
+
" <tr>\n",
|
447 |
+
" <td>190</td>\n",
|
448 |
+
" <td>0.662600</td>\n",
|
449 |
+
" </tr>\n",
|
450 |
+
" <tr>\n",
|
451 |
+
" <td>200</td>\n",
|
452 |
+
" <td>0.598400</td>\n",
|
453 |
+
" </tr>\n",
|
454 |
+
" <tr>\n",
|
455 |
+
" <td>210</td>\n",
|
456 |
+
" <td>0.717700</td>\n",
|
457 |
+
" </tr>\n",
|
458 |
+
" <tr>\n",
|
459 |
+
" <td>220</td>\n",
|
460 |
+
" <td>0.679100</td>\n",
|
461 |
+
" </tr>\n",
|
462 |
+
" <tr>\n",
|
463 |
+
" <td>230</td>\n",
|
464 |
+
" <td>0.677500</td>\n",
|
465 |
+
" </tr>\n",
|
466 |
+
" <tr>\n",
|
467 |
+
" <td>240</td>\n",
|
468 |
+
" <td>0.668800</td>\n",
|
469 |
+
" </tr>\n",
|
470 |
+
" <tr>\n",
|
471 |
+
" <td>250</td>\n",
|
472 |
+
" <td>0.678100</td>\n",
|
473 |
+
" </tr>\n",
|
474 |
+
" <tr>\n",
|
475 |
+
" <td>260</td>\n",
|
476 |
+
" <td>0.657500</td>\n",
|
477 |
+
" </tr>\n",
|
478 |
+
" <tr>\n",
|
479 |
+
" <td>270</td>\n",
|
480 |
+
" <td>0.707200</td>\n",
|
481 |
+
" </tr>\n",
|
482 |
+
" <tr>\n",
|
483 |
+
" <td>280</td>\n",
|
484 |
+
" <td>0.670300</td>\n",
|
485 |
+
" </tr>\n",
|
486 |
+
" <tr>\n",
|
487 |
+
" <td>290</td>\n",
|
488 |
+
" <td>0.659900</td>\n",
|
489 |
+
" </tr>\n",
|
490 |
+
" <tr>\n",
|
491 |
+
" <td>300</td>\n",
|
492 |
+
" <td>0.633300</td>\n",
|
493 |
+
" </tr>\n",
|
494 |
+
" <tr>\n",
|
495 |
+
" <td>310</td>\n",
|
496 |
+
" <td>0.676300</td>\n",
|
497 |
+
" </tr>\n",
|
498 |
+
" <tr>\n",
|
499 |
+
" <td>320</td>\n",
|
500 |
+
" <td>0.684800</td>\n",
|
501 |
+
" </tr>\n",
|
502 |
+
" <tr>\n",
|
503 |
+
" <td>330</td>\n",
|
504 |
+
" <td>0.673100</td>\n",
|
505 |
+
" </tr>\n",
|
506 |
+
" <tr>\n",
|
507 |
+
" <td>340</td>\n",
|
508 |
+
" <td>0.670500</td>\n",
|
509 |
+
" </tr>\n",
|
510 |
+
" <tr>\n",
|
511 |
+
" <td>350</td>\n",
|
512 |
+
" <td>0.657500</td>\n",
|
513 |
+
" </tr>\n",
|
514 |
+
" <tr>\n",
|
515 |
+
" <td>360</td>\n",
|
516 |
+
" <td>0.618100</td>\n",
|
517 |
+
" </tr>\n",
|
518 |
+
" <tr>\n",
|
519 |
+
" <td>370</td>\n",
|
520 |
+
" <td>0.670000</td>\n",
|
521 |
+
" </tr>\n",
|
522 |
+
" <tr>\n",
|
523 |
+
" <td>380</td>\n",
|
524 |
+
" <td>0.607400</td>\n",
|
525 |
+
" </tr>\n",
|
526 |
+
" <tr>\n",
|
527 |
+
" <td>390</td>\n",
|
528 |
+
" <td>0.656200</td>\n",
|
529 |
+
" </tr>\n",
|
530 |
+
" <tr>\n",
|
531 |
+
" <td>400</td>\n",
|
532 |
+
" <td>0.700000</td>\n",
|
533 |
+
" </tr>\n",
|
534 |
+
" <tr>\n",
|
535 |
+
" <td>410</td>\n",
|
536 |
+
" <td>0.644800</td>\n",
|
537 |
+
" </tr>\n",
|
538 |
+
" <tr>\n",
|
539 |
+
" <td>420</td>\n",
|
540 |
+
" <td>0.682800</td>\n",
|
541 |
+
" </tr>\n",
|
542 |
+
" <tr>\n",
|
543 |
+
" <td>430</td>\n",
|
544 |
+
" <td>0.668800</td>\n",
|
545 |
+
" </tr>\n",
|
546 |
+
" <tr>\n",
|
547 |
+
" <td>440</td>\n",
|
548 |
+
" <td>0.662600</td>\n",
|
549 |
+
" </tr>\n",
|
550 |
+
" <tr>\n",
|
551 |
+
" <td>450</td>\n",
|
552 |
+
" <td>0.647700</td>\n",
|
553 |
+
" </tr>\n",
|
554 |
+
" <tr>\n",
|
555 |
+
" <td>460</td>\n",
|
556 |
+
" <td>0.688600</td>\n",
|
557 |
+
" </tr>\n",
|
558 |
+
" <tr>\n",
|
559 |
+
" <td>470</td>\n",
|
560 |
+
" <td>0.682400</td>\n",
|
561 |
+
" </tr>\n",
|
562 |
+
" <tr>\n",
|
563 |
+
" <td>480</td>\n",
|
564 |
+
" <td>0.642900</td>\n",
|
565 |
+
" </tr>\n",
|
566 |
+
" <tr>\n",
|
567 |
+
" <td>490</td>\n",
|
568 |
+
" <td>0.726900</td>\n",
|
569 |
+
" </tr>\n",
|
570 |
+
" <tr>\n",
|
571 |
+
" <td>500</td>\n",
|
572 |
+
" <td>0.660400</td>\n",
|
573 |
+
" </tr>\n",
|
574 |
+
" <tr>\n",
|
575 |
+
" <td>510</td>\n",
|
576 |
+
" <td>0.649500</td>\n",
|
577 |
+
" </tr>\n",
|
578 |
+
" <tr>\n",
|
579 |
+
" <td>520</td>\n",
|
580 |
+
" <td>0.637200</td>\n",
|
581 |
+
" </tr>\n",
|
582 |
+
" <tr>\n",
|
583 |
+
" <td>530</td>\n",
|
584 |
+
" <td>0.669700</td>\n",
|
585 |
+
" </tr>\n",
|
586 |
+
" <tr>\n",
|
587 |
+
" <td>540</td>\n",
|
588 |
+
" <td>0.667100</td>\n",
|
589 |
+
" </tr>\n",
|
590 |
+
" <tr>\n",
|
591 |
+
" <td>550</td>\n",
|
592 |
+
" <td>0.617000</td>\n",
|
593 |
+
" </tr>\n",
|
594 |
+
" <tr>\n",
|
595 |
+
" <td>560</td>\n",
|
596 |
+
" <td>0.725300</td>\n",
|
597 |
+
" </tr>\n",
|
598 |
+
" <tr>\n",
|
599 |
+
" <td>570</td>\n",
|
600 |
+
" <td>0.656800</td>\n",
|
601 |
+
" </tr>\n",
|
602 |
+
" <tr>\n",
|
603 |
+
" <td>580</td>\n",
|
604 |
+
" <td>0.664600</td>\n",
|
605 |
+
" </tr>\n",
|
606 |
+
" <tr>\n",
|
607 |
+
" <td>590</td>\n",
|
608 |
+
" <td>0.702600</td>\n",
|
609 |
+
" </tr>\n",
|
610 |
+
" <tr>\n",
|
611 |
+
" <td>600</td>\n",
|
612 |
+
" <td>0.686300</td>\n",
|
613 |
+
" </tr>\n",
|
614 |
+
" <tr>\n",
|
615 |
+
" <td>610</td>\n",
|
616 |
+
" <td>0.668400</td>\n",
|
617 |
+
" </tr>\n",
|
618 |
+
" <tr>\n",
|
619 |
+
" <td>620</td>\n",
|
620 |
+
" <td>0.648200</td>\n",
|
621 |
+
" </tr>\n",
|
622 |
+
" <tr>\n",
|
623 |
+
" <td>630</td>\n",
|
624 |
+
" <td>0.628700</td>\n",
|
625 |
+
" </tr>\n",
|
626 |
+
" <tr>\n",
|
627 |
+
" <td>640</td>\n",
|
628 |
+
" <td>0.676700</td>\n",
|
629 |
+
" </tr>\n",
|
630 |
+
" <tr>\n",
|
631 |
+
" <td>650</td>\n",
|
632 |
+
" <td>0.652400</td>\n",
|
633 |
+
" </tr>\n",
|
634 |
+
" <tr>\n",
|
635 |
+
" <td>660</td>\n",
|
636 |
+
" <td>0.654300</td>\n",
|
637 |
+
" </tr>\n",
|
638 |
+
" <tr>\n",
|
639 |
+
" <td>670</td>\n",
|
640 |
+
" <td>0.640800</td>\n",
|
641 |
+
" </tr>\n",
|
642 |
+
" <tr>\n",
|
643 |
+
" <td>680</td>\n",
|
644 |
+
" <td>0.672000</td>\n",
|
645 |
+
" </tr>\n",
|
646 |
+
" <tr>\n",
|
647 |
+
" <td>690</td>\n",
|
648 |
+
" <td>0.636100</td>\n",
|
649 |
+
" </tr>\n",
|
650 |
+
" <tr>\n",
|
651 |
+
" <td>700</td>\n",
|
652 |
+
" <td>0.689100</td>\n",
|
653 |
+
" </tr>\n",
|
654 |
+
" <tr>\n",
|
655 |
+
" <td>710</td>\n",
|
656 |
+
" <td>0.691100</td>\n",
|
657 |
+
" </tr>\n",
|
658 |
+
" <tr>\n",
|
659 |
+
" <td>720</td>\n",
|
660 |
+
" <td>0.650300</td>\n",
|
661 |
+
" </tr>\n",
|
662 |
+
" <tr>\n",
|
663 |
+
" <td>730</td>\n",
|
664 |
+
" <td>0.655200</td>\n",
|
665 |
+
" </tr>\n",
|
666 |
+
" <tr>\n",
|
667 |
+
" <td>740</td>\n",
|
668 |
+
" <td>0.668400</td>\n",
|
669 |
+
" </tr>\n",
|
670 |
+
" <tr>\n",
|
671 |
+
" <td>750</td>\n",
|
672 |
+
" <td>0.659200</td>\n",
|
673 |
+
" </tr>\n",
|
674 |
+
" <tr>\n",
|
675 |
+
" <td>760</td>\n",
|
676 |
+
" <td>0.647800</td>\n",
|
677 |
+
" </tr>\n",
|
678 |
+
" <tr>\n",
|
679 |
+
" <td>770</td>\n",
|
680 |
+
" <td>0.662800</td>\n",
|
681 |
+
" </tr>\n",
|
682 |
+
" <tr>\n",
|
683 |
+
" <td>780</td>\n",
|
684 |
+
" <td>0.648500</td>\n",
|
685 |
+
" </tr>\n",
|
686 |
+
" <tr>\n",
|
687 |
+
" <td>790</td>\n",
|
688 |
+
" <td>0.656700</td>\n",
|
689 |
+
" </tr>\n",
|
690 |
+
" <tr>\n",
|
691 |
+
" <td>800</td>\n",
|
692 |
+
" <td>0.669400</td>\n",
|
693 |
+
" </tr>\n",
|
694 |
+
" <tr>\n",
|
695 |
+
" <td>810</td>\n",
|
696 |
+
" <td>0.607800</td>\n",
|
697 |
+
" </tr>\n",
|
698 |
+
" <tr>\n",
|
699 |
+
" <td>820</td>\n",
|
700 |
+
" <td>0.683200</td>\n",
|
701 |
+
" </tr>\n",
|
702 |
+
" <tr>\n",
|
703 |
+
" <td>830</td>\n",
|
704 |
+
" <td>0.663800</td>\n",
|
705 |
+
" </tr>\n",
|
706 |
+
" <tr>\n",
|
707 |
+
" <td>840</td>\n",
|
708 |
+
" <td>0.700900</td>\n",
|
709 |
+
" </tr>\n",
|
710 |
+
" <tr>\n",
|
711 |
+
" <td>850</td>\n",
|
712 |
+
" <td>0.648200</td>\n",
|
713 |
+
" </tr>\n",
|
714 |
+
" <tr>\n",
|
715 |
+
" <td>860</td>\n",
|
716 |
+
" <td>0.619400</td>\n",
|
717 |
+
" </tr>\n",
|
718 |
+
" <tr>\n",
|
719 |
+
" <td>870</td>\n",
|
720 |
+
" <td>0.649200</td>\n",
|
721 |
+
" </tr>\n",
|
722 |
+
" <tr>\n",
|
723 |
+
" <td>880</td>\n",
|
724 |
+
" <td>0.717500</td>\n",
|
725 |
+
" </tr>\n",
|
726 |
+
" <tr>\n",
|
727 |
+
" <td>890</td>\n",
|
728 |
+
" <td>0.669600</td>\n",
|
729 |
+
" </tr>\n",
|
730 |
+
" <tr>\n",
|
731 |
+
" <td>900</td>\n",
|
732 |
+
" <td>0.669700</td>\n",
|
733 |
+
" </tr>\n",
|
734 |
+
" <tr>\n",
|
735 |
+
" <td>910</td>\n",
|
736 |
+
" <td>0.683900</td>\n",
|
737 |
+
" </tr>\n",
|
738 |
+
" <tr>\n",
|
739 |
+
" <td>920</td>\n",
|
740 |
+
" <td>0.636900</td>\n",
|
741 |
+
" </tr>\n",
|
742 |
+
" <tr>\n",
|
743 |
+
" <td>930</td>\n",
|
744 |
+
" <td>0.656400</td>\n",
|
745 |
+
" </tr>\n",
|
746 |
+
" <tr>\n",
|
747 |
+
" <td>940</td>\n",
|
748 |
+
" <td>0.650000</td>\n",
|
749 |
+
" </tr>\n",
|
750 |
+
" <tr>\n",
|
751 |
+
" <td>950</td>\n",
|
752 |
+
" <td>0.617800</td>\n",
|
753 |
+
" </tr>\n",
|
754 |
+
" <tr>\n",
|
755 |
+
" <td>960</td>\n",
|
756 |
+
" <td>0.665600</td>\n",
|
757 |
+
" </tr>\n",
|
758 |
+
" <tr>\n",
|
759 |
+
" <td>970</td>\n",
|
760 |
+
" <td>0.642700</td>\n",
|
761 |
+
" </tr>\n",
|
762 |
+
" <tr>\n",
|
763 |
+
" <td>980</td>\n",
|
764 |
+
" <td>0.644000</td>\n",
|
765 |
+
" </tr>\n",
|
766 |
+
" <tr>\n",
|
767 |
+
" <td>990</td>\n",
|
768 |
+
" <td>0.688900</td>\n",
|
769 |
+
" </tr>\n",
|
770 |
+
" <tr>\n",
|
771 |
+
" <td>1000</td>\n",
|
772 |
+
" <td>0.654700</td>\n",
|
773 |
+
" </tr>\n",
|
774 |
+
" <tr>\n",
|
775 |
+
" <td>1010</td>\n",
|
776 |
+
" <td>0.645800</td>\n",
|
777 |
+
" </tr>\n",
|
778 |
+
" <tr>\n",
|
779 |
+
" <td>1020</td>\n",
|
780 |
+
" <td>0.609200</td>\n",
|
781 |
+
" </tr>\n",
|
782 |
+
" <tr>\n",
|
783 |
+
" <td>1030</td>\n",
|
784 |
+
" <td>0.602300</td>\n",
|
785 |
+
" </tr>\n",
|
786 |
+
" <tr>\n",
|
787 |
+
" <td>1040</td>\n",
|
788 |
+
" <td>0.618800</td>\n",
|
789 |
+
" </tr>\n",
|
790 |
+
" <tr>\n",
|
791 |
+
" <td>1050</td>\n",
|
792 |
+
" <td>0.643500</td>\n",
|
793 |
+
" </tr>\n",
|
794 |
+
" <tr>\n",
|
795 |
+
" <td>1060</td>\n",
|
796 |
+
" <td>0.611000</td>\n",
|
797 |
+
" </tr>\n",
|
798 |
+
" <tr>\n",
|
799 |
+
" <td>1070</td>\n",
|
800 |
+
" <td>0.645000</td>\n",
|
801 |
+
" </tr>\n",
|
802 |
+
" <tr>\n",
|
803 |
+
" <td>1080</td>\n",
|
804 |
+
" <td>0.641000</td>\n",
|
805 |
+
" </tr>\n",
|
806 |
+
" <tr>\n",
|
807 |
+
" <td>1090</td>\n",
|
808 |
+
" <td>0.595400</td>\n",
|
809 |
+
" </tr>\n",
|
810 |
+
" <tr>\n",
|
811 |
+
" <td>1100</td>\n",
|
812 |
+
" <td>0.635100</td>\n",
|
813 |
+
" </tr>\n",
|
814 |
+
" <tr>\n",
|
815 |
+
" <td>1110</td>\n",
|
816 |
+
" <td>0.611600</td>\n",
|
817 |
+
" </tr>\n",
|
818 |
+
" <tr>\n",
|
819 |
+
" <td>1120</td>\n",
|
820 |
+
" <td>0.600300</td>\n",
|
821 |
+
" </tr>\n",
|
822 |
+
" <tr>\n",
|
823 |
+
" <td>1130</td>\n",
|
824 |
+
" <td>0.618100</td>\n",
|
825 |
+
" </tr>\n",
|
826 |
+
" <tr>\n",
|
827 |
+
" <td>1140</td>\n",
|
828 |
+
" <td>0.617200</td>\n",
|
829 |
+
" </tr>\n",
|
830 |
+
" <tr>\n",
|
831 |
+
" <td>1150</td>\n",
|
832 |
+
" <td>0.633400</td>\n",
|
833 |
+
" </tr>\n",
|
834 |
+
" <tr>\n",
|
835 |
+
" <td>1160</td>\n",
|
836 |
+
" <td>0.597600</td>\n",
|
837 |
+
" </tr>\n",
|
838 |
+
" <tr>\n",
|
839 |
+
" <td>1170</td>\n",
|
840 |
+
" <td>0.619400</td>\n",
|
841 |
+
" </tr>\n",
|
842 |
+
" <tr>\n",
|
843 |
+
" <td>1180</td>\n",
|
844 |
+
" <td>0.584200</td>\n",
|
845 |
+
" </tr>\n",
|
846 |
+
" <tr>\n",
|
847 |
+
" <td>1190</td>\n",
|
848 |
+
" <td>0.600700</td>\n",
|
849 |
+
" </tr>\n",
|
850 |
+
" <tr>\n",
|
851 |
+
" <td>1200</td>\n",
|
852 |
+
" <td>0.657400</td>\n",
|
853 |
+
" </tr>\n",
|
854 |
+
" <tr>\n",
|
855 |
+
" <td>1210</td>\n",
|
856 |
+
" <td>0.569600</td>\n",
|
857 |
+
" </tr>\n",
|
858 |
+
" <tr>\n",
|
859 |
+
" <td>1220</td>\n",
|
860 |
+
" <td>0.575500</td>\n",
|
861 |
+
" </tr>\n",
|
862 |
+
" <tr>\n",
|
863 |
+
" <td>1230</td>\n",
|
864 |
+
" <td>0.617900</td>\n",
|
865 |
+
" </tr>\n",
|
866 |
+
" <tr>\n",
|
867 |
+
" <td>1240</td>\n",
|
868 |
+
" <td>0.610300</td>\n",
|
869 |
+
" </tr>\n",
|
870 |
+
" <tr>\n",
|
871 |
+
" <td>1250</td>\n",
|
872 |
+
" <td>0.570600</td>\n",
|
873 |
+
" </tr>\n",
|
874 |
+
" <tr>\n",
|
875 |
+
" <td>1260</td>\n",
|
876 |
+
" <td>0.545700</td>\n",
|
877 |
+
" </tr>\n",
|
878 |
+
" <tr>\n",
|
879 |
+
" <td>1270</td>\n",
|
880 |
+
" <td>0.656300</td>\n",
|
881 |
+
" </tr>\n",
|
882 |
+
" <tr>\n",
|
883 |
+
" <td>1280</td>\n",
|
884 |
+
" <td>0.554700</td>\n",
|
885 |
+
" </tr>\n",
|
886 |
+
" <tr>\n",
|
887 |
+
" <td>1290</td>\n",
|
888 |
+
" <td>0.598200</td>\n",
|
889 |
+
" </tr>\n",
|
890 |
+
" <tr>\n",
|
891 |
+
" <td>1300</td>\n",
|
892 |
+
" <td>0.606300</td>\n",
|
893 |
+
" </tr>\n",
|
894 |
+
" <tr>\n",
|
895 |
+
" <td>1310</td>\n",
|
896 |
+
" <td>0.600500</td>\n",
|
897 |
+
" </tr>\n",
|
898 |
+
" <tr>\n",
|
899 |
+
" <td>1320</td>\n",
|
900 |
+
" <td>0.569800</td>\n",
|
901 |
+
" </tr>\n",
|
902 |
+
" <tr>\n",
|
903 |
+
" <td>1330</td>\n",
|
904 |
+
" <td>0.604700</td>\n",
|
905 |
+
" </tr>\n",
|
906 |
+
" <tr>\n",
|
907 |
+
" <td>1340</td>\n",
|
908 |
+
" <td>0.628300</td>\n",
|
909 |
+
" </tr>\n",
|
910 |
+
" <tr>\n",
|
911 |
+
" <td>1350</td>\n",
|
912 |
+
" <td>0.602700</td>\n",
|
913 |
+
" </tr>\n",
|
914 |
+
" <tr>\n",
|
915 |
+
" <td>1360</td>\n",
|
916 |
+
" <td>0.583700</td>\n",
|
917 |
+
" </tr>\n",
|
918 |
+
" <tr>\n",
|
919 |
+
" <td>1370</td>\n",
|
920 |
+
" <td>0.623800</td>\n",
|
921 |
+
" </tr>\n",
|
922 |
+
" <tr>\n",
|
923 |
+
" <td>1380</td>\n",
|
924 |
+
" <td>0.670300</td>\n",
|
925 |
+
" </tr>\n",
|
926 |
+
" <tr>\n",
|
927 |
+
" <td>1390</td>\n",
|
928 |
+
" <td>0.622400</td>\n",
|
929 |
+
" </tr>\n",
|
930 |
+
" <tr>\n",
|
931 |
+
" <td>1400</td>\n",
|
932 |
+
" <td>0.590200</td>\n",
|
933 |
+
" </tr>\n",
|
934 |
+
" <tr>\n",
|
935 |
+
" <td>1410</td>\n",
|
936 |
+
" <td>0.587000</td>\n",
|
937 |
+
" </tr>\n",
|
938 |
+
" <tr>\n",
|
939 |
+
" <td>1420</td>\n",
|
940 |
+
" <td>0.555500</td>\n",
|
941 |
+
" </tr>\n",
|
942 |
+
" <tr>\n",
|
943 |
+
" <td>1430</td>\n",
|
944 |
+
" <td>0.561000</td>\n",
|
945 |
+
" </tr>\n",
|
946 |
+
" <tr>\n",
|
947 |
+
" <td>1440</td>\n",
|
948 |
+
" <td>0.514300</td>\n",
|
949 |
+
" </tr>\n",
|
950 |
+
" <tr>\n",
|
951 |
+
" <td>1450</td>\n",
|
952 |
+
" <td>0.553100</td>\n",
|
953 |
+
" </tr>\n",
|
954 |
+
" <tr>\n",
|
955 |
+
" <td>1460</td>\n",
|
956 |
+
" <td>0.692400</td>\n",
|
957 |
+
" </tr>\n",
|
958 |
+
" <tr>\n",
|
959 |
+
" <td>1470</td>\n",
|
960 |
+
" <td>0.605200</td>\n",
|
961 |
+
" </tr>\n",
|
962 |
+
" <tr>\n",
|
963 |
+
" <td>1480</td>\n",
|
964 |
+
" <td>0.548000</td>\n",
|
965 |
+
" </tr>\n",
|
966 |
+
" <tr>\n",
|
967 |
+
" <td>1490</td>\n",
|
968 |
+
" <td>0.672600</td>\n",
|
969 |
+
" </tr>\n",
|
970 |
+
" <tr>\n",
|
971 |
+
" <td>1500</td>\n",
|
972 |
+
" <td>0.531100</td>\n",
|
973 |
+
" </tr>\n",
|
974 |
+
" <tr>\n",
|
975 |
+
" <td>1510</td>\n",
|
976 |
+
" <td>0.610600</td>\n",
|
977 |
+
" </tr>\n",
|
978 |
+
" <tr>\n",
|
979 |
+
" <td>1520</td>\n",
|
980 |
+
" <td>0.580200</td>\n",
|
981 |
+
" </tr>\n",
|
982 |
+
" <tr>\n",
|
983 |
+
" <td>1530</td>\n",
|
984 |
+
" <td>0.571300</td>\n",
|
985 |
+
" </tr>\n",
|
986 |
+
" <tr>\n",
|
987 |
+
" <td>1540</td>\n",
|
988 |
+
" <td>0.644400</td>\n",
|
989 |
+
" </tr>\n",
|
990 |
+
" <tr>\n",
|
991 |
+
" <td>1550</td>\n",
|
992 |
+
" <td>0.558500</td>\n",
|
993 |
+
" </tr>\n",
|
994 |
+
" <tr>\n",
|
995 |
+
" <td>1560</td>\n",
|
996 |
+
" <td>0.624000</td>\n",
|
997 |
+
" </tr>\n",
|
998 |
+
" <tr>\n",
|
999 |
+
" <td>1570</td>\n",
|
1000 |
+
" <td>0.659200</td>\n",
|
1001 |
+
" </tr>\n",
|
1002 |
+
" <tr>\n",
|
1003 |
+
" <td>1580</td>\n",
|
1004 |
+
" <td>0.580500</td>\n",
|
1005 |
+
" </tr>\n",
|
1006 |
+
" <tr>\n",
|
1007 |
+
" <td>1590</td>\n",
|
1008 |
+
" <td>0.649900</td>\n",
|
1009 |
+
" </tr>\n",
|
1010 |
+
" <tr>\n",
|
1011 |
+
" <td>1600</td>\n",
|
1012 |
+
" <td>0.608700</td>\n",
|
1013 |
+
" </tr>\n",
|
1014 |
+
" <tr>\n",
|
1015 |
+
" <td>1610</td>\n",
|
1016 |
+
" <td>0.595100</td>\n",
|
1017 |
+
" </tr>\n",
|
1018 |
+
" <tr>\n",
|
1019 |
+
" <td>1620</td>\n",
|
1020 |
+
" <td>0.592900</td>\n",
|
1021 |
+
" </tr>\n",
|
1022 |
+
" <tr>\n",
|
1023 |
+
" <td>1630</td>\n",
|
1024 |
+
" <td>0.584000</td>\n",
|
1025 |
+
" </tr>\n",
|
1026 |
+
" <tr>\n",
|
1027 |
+
" <td>1640</td>\n",
|
1028 |
+
" <td>0.607100</td>\n",
|
1029 |
+
" </tr>\n",
|
1030 |
+
" <tr>\n",
|
1031 |
+
" <td>1650</td>\n",
|
1032 |
+
" <td>0.565800</td>\n",
|
1033 |
+
" </tr>\n",
|
1034 |
+
" <tr>\n",
|
1035 |
+
" <td>1660</td>\n",
|
1036 |
+
" <td>0.568300</td>\n",
|
1037 |
+
" </tr>\n",
|
1038 |
+
" <tr>\n",
|
1039 |
+
" <td>1670</td>\n",
|
1040 |
+
" <td>0.572200</td>\n",
|
1041 |
+
" </tr>\n",
|
1042 |
+
" <tr>\n",
|
1043 |
+
" <td>1680</td>\n",
|
1044 |
+
" <td>0.597500</td>\n",
|
1045 |
+
" </tr>\n",
|
1046 |
+
" <tr>\n",
|
1047 |
+
" <td>1690</td>\n",
|
1048 |
+
" <td>0.602700</td>\n",
|
1049 |
+
" </tr>\n",
|
1050 |
+
" <tr>\n",
|
1051 |
+
" <td>1700</td>\n",
|
1052 |
+
" <td>0.692900</td>\n",
|
1053 |
+
" </tr>\n",
|
1054 |
+
" <tr>\n",
|
1055 |
+
" <td>1710</td>\n",
|
1056 |
+
" <td>0.597900</td>\n",
|
1057 |
+
" </tr>\n",
|
1058 |
+
" <tr>\n",
|
1059 |
+
" <td>1720</td>\n",
|
1060 |
+
" <td>0.538600</td>\n",
|
1061 |
+
" </tr>\n",
|
1062 |
+
" <tr>\n",
|
1063 |
+
" <td>1730</td>\n",
|
1064 |
+
" <td>0.599400</td>\n",
|
1065 |
+
" </tr>\n",
|
1066 |
+
" <tr>\n",
|
1067 |
+
" <td>1740</td>\n",
|
1068 |
+
" <td>0.704300</td>\n",
|
1069 |
+
" </tr>\n",
|
1070 |
+
" <tr>\n",
|
1071 |
+
" <td>1750</td>\n",
|
1072 |
+
" <td>0.580500</td>\n",
|
1073 |
+
" </tr>\n",
|
1074 |
+
" <tr>\n",
|
1075 |
+
" <td>1760</td>\n",
|
1076 |
+
" <td>0.595600</td>\n",
|
1077 |
+
" </tr>\n",
|
1078 |
+
" <tr>\n",
|
1079 |
+
" <td>1770</td>\n",
|
1080 |
+
" <td>0.583100</td>\n",
|
1081 |
+
" </tr>\n",
|
1082 |
+
" <tr>\n",
|
1083 |
+
" <td>1780</td>\n",
|
1084 |
+
" <td>0.569500</td>\n",
|
1085 |
+
" </tr>\n",
|
1086 |
+
" <tr>\n",
|
1087 |
+
" <td>1790</td>\n",
|
1088 |
+
" <td>0.603300</td>\n",
|
1089 |
+
" </tr>\n",
|
1090 |
+
" <tr>\n",
|
1091 |
+
" <td>1800</td>\n",
|
1092 |
+
" <td>0.564500</td>\n",
|
1093 |
+
" </tr>\n",
|
1094 |
+
" <tr>\n",
|
1095 |
+
" <td>1810</td>\n",
|
1096 |
+
" <td>0.592100</td>\n",
|
1097 |
+
" </tr>\n",
|
1098 |
+
" <tr>\n",
|
1099 |
+
" <td>1820</td>\n",
|
1100 |
+
" <td>0.617000</td>\n",
|
1101 |
+
" </tr>\n",
|
1102 |
+
" <tr>\n",
|
1103 |
+
" <td>1830</td>\n",
|
1104 |
+
" <td>0.656500</td>\n",
|
1105 |
+
" </tr>\n",
|
1106 |
+
" <tr>\n",
|
1107 |
+
" <td>1840</td>\n",
|
1108 |
+
" <td>0.563600</td>\n",
|
1109 |
+
" </tr>\n",
|
1110 |
+
" <tr>\n",
|
1111 |
+
" <td>1850</td>\n",
|
1112 |
+
" <td>0.624800</td>\n",
|
1113 |
+
" </tr>\n",
|
1114 |
+
" <tr>\n",
|
1115 |
+
" <td>1860</td>\n",
|
1116 |
+
" <td>0.686700</td>\n",
|
1117 |
+
" </tr>\n",
|
1118 |
+
" <tr>\n",
|
1119 |
+
" <td>1870</td>\n",
|
1120 |
+
" <td>0.572300</td>\n",
|
1121 |
+
" </tr>\n",
|
1122 |
+
" <tr>\n",
|
1123 |
+
" <td>1880</td>\n",
|
1124 |
+
" <td>0.587700</td>\n",
|
1125 |
+
" </tr>\n",
|
1126 |
+
" <tr>\n",
|
1127 |
+
" <td>1890</td>\n",
|
1128 |
+
" <td>0.583000</td>\n",
|
1129 |
+
" </tr>\n",
|
1130 |
+
" <tr>\n",
|
1131 |
+
" <td>1900</td>\n",
|
1132 |
+
" <td>0.601500</td>\n",
|
1133 |
+
" </tr>\n",
|
1134 |
+
" <tr>\n",
|
1135 |
+
" <td>1910</td>\n",
|
1136 |
+
" <td>0.559700</td>\n",
|
1137 |
+
" </tr>\n",
|
1138 |
+
" <tr>\n",
|
1139 |
+
" <td>1920</td>\n",
|
1140 |
+
" <td>0.610100</td>\n",
|
1141 |
+
" </tr>\n",
|
1142 |
+
" <tr>\n",
|
1143 |
+
" <td>1930</td>\n",
|
1144 |
+
" <td>0.571300</td>\n",
|
1145 |
+
" </tr>\n",
|
1146 |
+
" <tr>\n",
|
1147 |
+
" <td>1940</td>\n",
|
1148 |
+
" <td>0.549900</td>\n",
|
1149 |
+
" </tr>\n",
|
1150 |
+
" <tr>\n",
|
1151 |
+
" <td>1950</td>\n",
|
1152 |
+
" <td>0.589200</td>\n",
|
1153 |
+
" </tr>\n",
|
1154 |
+
" <tr>\n",
|
1155 |
+
" <td>1960</td>\n",
|
1156 |
+
" <td>0.634800</td>\n",
|
1157 |
+
" </tr>\n",
|
1158 |
+
" <tr>\n",
|
1159 |
+
" <td>1970</td>\n",
|
1160 |
+
" <td>0.584200</td>\n",
|
1161 |
+
" </tr>\n",
|
1162 |
+
" <tr>\n",
|
1163 |
+
" <td>1980</td>\n",
|
1164 |
+
" <td>0.557000</td>\n",
|
1165 |
+
" </tr>\n",
|
1166 |
+
" <tr>\n",
|
1167 |
+
" <td>1990</td>\n",
|
1168 |
+
" <td>0.602700</td>\n",
|
1169 |
+
" </tr>\n",
|
1170 |
+
" <tr>\n",
|
1171 |
+
" <td>2000</td>\n",
|
1172 |
+
" <td>0.669700</td>\n",
|
1173 |
+
" </tr>\n",
|
1174 |
+
" <tr>\n",
|
1175 |
+
" <td>2010</td>\n",
|
1176 |
+
" <td>0.607500</td>\n",
|
1177 |
+
" </tr>\n",
|
1178 |
+
" <tr>\n",
|
1179 |
+
" <td>2020</td>\n",
|
1180 |
+
" <td>0.631800</td>\n",
|
1181 |
+
" </tr>\n",
|
1182 |
+
" </tbody>\n",
|
1183 |
+
"</table><p>"
|
1184 |
+
],
|
1185 |
+
"text/plain": [
|
1186 |
+
"<IPython.core.display.HTML object>"
|
1187 |
+
]
|
1188 |
+
},
|
1189 |
+
"metadata": {},
|
1190 |
+
"output_type": "display_data"
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"name": "stderr",
|
1194 |
+
"output_type": "stream",
|
1195 |
+
"text": [
|
1196 |
+
"Saving model checkpoint to ./results/checkpoint-500\n",
|
1197 |
+
"Configuration saved in ./results/checkpoint-500\\config.json\n",
|
1198 |
+
"Model weights saved in ./results/checkpoint-500\\pytorch_model.bin\n",
|
1199 |
+
"Saving model checkpoint to ./results/checkpoint-1000\n",
|
1200 |
+
"Configuration saved in ./results/checkpoint-1000\\config.json\n",
|
1201 |
+
"Model weights saved in ./results/checkpoint-1000\\pytorch_model.bin\n",
|
1202 |
+
"Saving model checkpoint to ./results/checkpoint-1500\n",
|
1203 |
+
"Configuration saved in ./results/checkpoint-1500\\config.json\n",
|
1204 |
+
"Model weights saved in ./results/checkpoint-1500\\pytorch_model.bin\n",
|
1205 |
+
"Saving model checkpoint to ./results/checkpoint-2000\n",
|
1206 |
+
"Configuration saved in ./results/checkpoint-2000\\config.json\n",
|
1207 |
+
"Model weights saved in ./results/checkpoint-2000\\pytorch_model.bin\n",
|
1208 |
+
"\n",
|
1209 |
+
"\n",
|
1210 |
+
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
1211 |
+
"\n",
|
1212 |
+
"\n"
|
1213 |
+
]
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"data": {
|
1217 |
+
"text/plain": [
|
1218 |
+
"TrainOutput(global_step=2020, training_loss=0.6342116433795136, metrics={'train_runtime': 708.5025, 'train_samples_per_second': 45.598, 'train_steps_per_second': 2.851, 'total_flos': 4279491780980736.0, 'train_loss': 0.6342116433795136, 'epoch': 2.0})"
|
1219 |
+
]
|
1220 |
+
},
|
1221 |
+
"execution_count": 13,
|
1222 |
+
"metadata": {},
|
1223 |
+
"output_type": "execute_result"
|
1224 |
+
}
|
1225 |
+
],
|
1226 |
+
"source": [
|
1227 |
+
"trainer.train()"
|
1228 |
+
]
|
1229 |
+
},
|
1230 |
+
{
|
1231 |
+
"cell_type": "markdown",
|
1232 |
+
"id": "304e0d65-74cf-4945-978d-b9f56c5a83b1",
|
1233 |
+
"metadata": {},
|
1234 |
+
"source": [
|
1235 |
+
"PyTorch Training Loop"
|
1236 |
+
]
|
1237 |
+
},
|
1238 |
+
{
|
1239 |
+
"cell_type": "code",
|
1240 |
+
"execution_count": null,
|
1241 |
+
"id": "e56d14fb-dfde-40fa-9dfa-1187c2e09866",
|
1242 |
+
"metadata": {},
|
1243 |
+
"outputs": [],
|
1244 |
+
"source": [
|
1245 |
+
"# model.train()\n",
|
1246 |
+
"# optim = AdamW(model.parameters(), lr=5e-5)\n",
|
1247 |
+
"# num_training_epochs = 2\n",
|
1248 |
+
"\n",
|
1249 |
+
"# for epoch in range(num_training_epochs):\n",
|
1250 |
+
"# print(\"starting epoch: \" + str(epoch))\n",
|
1251 |
+
"# for batch in train_dataloader:\n",
|
1252 |
+
"# optim.zero_grad()\n",
|
1253 |
+
"# input_ids = batch['input_ids'].to(device)\n",
|
1254 |
+
"# attention_mask = batch['attention_mask'].to(device)\n",
|
1255 |
+
"# labels = batch['labels'].to(device)\n",
|
1256 |
+
"# outputs = model(input_ids, attention_mask=attention_mask, labels=labels)\n",
|
1257 |
+
"# loss = outputs[0]\n",
|
1258 |
+
"# loss.backward()\n",
|
1259 |
+
"# optim.step()\n",
|
1260 |
+
"# model.eval()"
|
1261 |
+
]
|
1262 |
+
},
|
1263 |
+
{
|
1264 |
+
"cell_type": "code",
|
1265 |
+
"execution_count": null,
|
1266 |
+
"id": "9b496593-c0de-4ce2-95d5-d5d3bf09d93c",
|
1267 |
+
"metadata": {},
|
1268 |
+
"outputs": [],
|
1269 |
+
"source": []
|
1270 |
+
}
|
1271 |
+
],
|
1272 |
+
"metadata": {
|
1273 |
+
"kernelspec": {
|
1274 |
+
"display_name": "Python 3 (ipykernel)",
|
1275 |
+
"language": "python",
|
1276 |
+
"name": "python3"
|
1277 |
+
},
|
1278 |
+
"language_info": {
|
1279 |
+
"codemirror_mode": {
|
1280 |
+
"name": "ipython",
|
1281 |
+
"version": 3
|
1282 |
+
},
|
1283 |
+
"file_extension": ".py",
|
1284 |
+
"mimetype": "text/x-python",
|
1285 |
+
"name": "python",
|
1286 |
+
"nbconvert_exporter": "python",
|
1287 |
+
"pygments_lexer": "ipython3",
|
1288 |
+
"version": "3.9.16"
|
1289 |
+
}
|
1290 |
+
},
|
1291 |
+
"nbformat": 4,
|
1292 |
+
"nbformat_minor": 5
|
1293 |
+
}
|
finetunehupd.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""FinetuneHUPD.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/17c2CQZx_kyD3-0fuQqv_pCMJ0Evd7fLN
|
8 |
+
"""
|
9 |
+
|
10 |
+
# Pretty print
|
11 |
+
from pprint import pprint
|
12 |
+
# Datasets load_dataset function
|
13 |
+
from datasets import load_dataset
|
14 |
+
# Transformers Autokenizer
|
15 |
+
from transformers import AutoTokenizer, DistilBertForSequenceClassification, DistilBertTokenizer, Trainer, TrainingArguments, AdamW
|
16 |
+
from torch.utils.data import DataLoader
|
17 |
+
import torch
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
|
20 |
+
|
21 |
+
dataset_dict = load_dataset('HUPD/hupd',
|
22 |
+
name='sample',
|
23 |
+
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
|
24 |
+
icpr_label=None,
|
25 |
+
train_filing_start_date='2016-01-01',
|
26 |
+
train_filing_end_date='2016-01-31',
|
27 |
+
val_filing_start_date='2016-01-01',
|
28 |
+
val_filing_end_date='2016-01-31',
|
29 |
+
)
|
30 |
+
|
31 |
+
print('Loading is done!')
|
32 |
+
|
33 |
+
# Label-to-index mapping for the decision status field
|
34 |
+
decision_to_str = {'REJECTED': 0, 'ACCEPTED': 1, 'PENDING': 2, 'CONT-REJECTED': 3, 'CONT-ACCEPTED': 4, 'CONT-PENDING': 5}
|
35 |
+
|
36 |
+
# Helper function
|
37 |
+
def map_decision_to_string(example):
|
38 |
+
return {'decision': decision_to_str[example['decision']]}
|
39 |
+
|
40 |
+
# Re-labeling/mapping.
|
41 |
+
train_set = dataset_dict['train'].map(map_decision_to_string)
|
42 |
+
val_set = dataset_dict['validation'].map(map_decision_to_string)
|
43 |
+
|
44 |
+
# Focus on the abstract section and tokenize the text using the tokenizer.
|
45 |
+
_SECTION_ = 'abstract'
|
46 |
+
|
47 |
+
# Training set
|
48 |
+
train_set = train_set.map(
|
49 |
+
lambda e: tokenizer((e[_SECTION_]), truncation=True, padding='max_length'),
|
50 |
+
batched=True)
|
51 |
+
|
52 |
+
# Validation set
|
53 |
+
val_set = val_set.map(
|
54 |
+
lambda e: tokenizer((e[_SECTION_]), truncation=True, padding='max_length'),
|
55 |
+
batched=True)
|
56 |
+
|
57 |
+
# Set the format
|
58 |
+
train_set.set_format(type='torch',
|
59 |
+
columns=['input_ids', 'attention_mask', 'decision'])
|
60 |
+
|
61 |
+
val_set.set_format(type='torch',
|
62 |
+
columns=['input_ids', 'attention_mask', 'decision'])
|
63 |
+
|
64 |
+
#print(train_set['decision'])
|
65 |
+
|
66 |
+
# train_dataloader and val_data_loader
|
67 |
+
train_dataloader = DataLoader(train_set, batch_size=16)
|
68 |
+
val_dataloader = DataLoader(val_set, batch_size=16)
|
69 |
+
|
70 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
71 |
+
model = DistilBertForSequenceClassification.from_pretrained('distilbert-base-uncased')
|
72 |
+
model.to(device)
|
73 |
+
print(device)
|
74 |
+
print("torch cuda is avail: ")
|
75 |
+
print(torch.cuda.is_available())
|
76 |
+
model.train()
|
77 |
+
optim = AdamW(model.parameters(), lr=5e-5)
|
78 |
+
num_training_epochs = 2
|
79 |
+
|
80 |
+
for epoch in range(num_training_epochs):
|
81 |
+
for batch in train_dataloader:
|
82 |
+
optim.zero_grad()
|
83 |
+
input_ids = batch['input_ids'].to(device)
|
84 |
+
attention_mask = batch['attention_mask'].to(device)
|
85 |
+
labels = batch['decision'].to(device)
|
86 |
+
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
|
87 |
+
loss = outputs[0]
|
88 |
+
loss.backward()
|
89 |
+
optim.step()
|
90 |
+
print("batch finished")
|
91 |
+
|
92 |
+
model.eval()
|