Spaces:
Runtime error
Runtime error
import streamlit as st | |
from datasets import load_dataset | |
from transformers import pipeline, DistilBertForSequenceClassification, DistilBertTokenizerFast, AutoModelForSequenceClassification, AutoTokenizer, TFAutoModelForSequenceClassification | |
# Options for models from transformers library | |
MODEL_OPTS = ['finetuned', 'default', 'bertweet-base-sentiment-analysis', 'twitter-roberta-base', 'distilRoberta-financial-sentiment'] | |
FINETUNED_OPT = MODEL_OPTS[0] | |
DEFAULT_OPT = MODEL_OPTS[1] | |
# Helper function | |
def map_decision_to_string(example): | |
return {'decision': decision_to_str[example['decision']]} | |
def load_abstracts(): | |
dataset_dict = load_dataset('HUPD/hupd', | |
name='sample', | |
data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather", | |
icpr_label=None, | |
train_filing_start_date='2016-01-01', | |
train_filing_end_date='2016-01-31', | |
val_filing_start_date='2016-01-01', | |
val_filing_end_date='2016-01-01', | |
) | |
abstracts = dataset_dict['train']['abstract'] | |
dataset_dict = [] | |
return abstracts | |
# returns loaded model and tokenizer, if any | |
def load_model(opt): | |
if opt not in MODEL_OPTS: print("Incorrect model selection. Try again!") | |
model, tokenizer = None, None | |
# Load the chosen sentiment analysis model from transformers | |
if opt == FINETUNED_OPT: | |
tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased') | |
model = DistilBertForSequenceClassification.from_pretrained('saccharinedreams/finetuned-distilbert-base-uncased-for-hupd') | |
elif opt == DEFAULT_OPT: | |
return model, tokenizer | |
elif opt == 'bertweet-base-sentiment-analysis': | |
tokenizer = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis") | |
model = AutoModelForSequenceClassification.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis") | |
elif opt == 'twitter-roberta-base-sentiment': | |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
elif opt == 'distilRoberta-financial-sentiment': | |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
model = AutoModelForSequenceClassification.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
elif not model and not tokenizer: | |
print("Model not loaded correctly. Try again!") | |
return model, tokenizer | |
def sentiment_analysis(model, tokenizer): | |
if model and tokenizer: | |
return pipeline('text-classification', model=model, tokenizer=tokenizer) | |
else: return pipeline('text-classification') | |
# Title the Streamlit app 'Finetuned Harvard USPTO Patent Dataset (using DistilBert-Base-Uncased)' | |
st.title('Finetuned Sentiment Analysis for US Patents') | |
st.markdown('Link to the app - [sentiment-analysis-app](https://huggingface.co/spaces/saccharinedreams/sentiment-analysis-app)') | |
st.markdown('Link to the model - [model repo](https://huggingface.co/saccharinedreams/finetuned-distilbert-base-uncased-for-hupd') | |
st.markdown('This model was finetuned on the Harvard USPTO Patent Dataset and uses Distilbert-Base-Uncased.') | |
abstracts = load_abstracts() | |
print(len(abstracts)) | |
print(abstracts[0]) | |
dropdown_abstracts = st.selectbox('Select one of the following abstracts from the HUPD dataset:', abstracts, index=abstracts.index(abstracts[0])) | |
model, tokenizer = load_model('finetuned') | |
# Take in user input | |
#user_text = st.text_input('Input text to perform sentiment analysis on here.', 'I love AI!') | |
# The user can interact with a dropdown menu to choose a sentiment analysis model. | |
#dropdown_value = st.selectbox('Select one of the following sentiment analysis models', MODEL_OPTS, index=MODEL_OPTS.index(DEFAULT_OPT)) | |
#model, tokenizer = load_model(dropdown_value) | |
# Perform sentiment analysis on the user's input | |
result = sentiment_analysis(model, tokenizer)(dropdown_abstracts) | |
# Display the sentiment analysis results | |
st.markdown('Labels 0, 1: Not accepted, Accepted') | |
st.write('Sentiment:', result[0]['label'], '; Score:', result[0]['score']) | |