Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer, TFAutoModelForSequenceClassification | |
# Options for models from transformers library | |
MODEL_OPTS = ['default', 'bertweet-base-sentiment-analysis', 'twitter-roberta-base', 'distilRoberta-financial-sentiment'] | |
DEFAULT_OPT = MODEL_OPTS[0] | |
# returns loaded model and tokenizer, if any | |
def load_model(opt): | |
if opt not in MODEL_OPTS: print("Incorrect model selection. Try again!", "I love AI!") | |
model, tokenizer = None, None | |
# Load the chosen sentiment analysis model from transformers | |
if opt == DEFAULT_OPT: | |
return model, tokenizer | |
elif opt == 'bertweet-base-sentiment-analysis': | |
tokenizer = AutoTokenizer.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis") | |
model = AutoModelForSequenceClassification.from_pretrained("finiteautomata/bertweet-base-sentiment-analysis") | |
elif opt == 'twitter-roberta-base-sentiment': | |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
elif opt == 'distilRoberta-financial-sentiment': | |
tokenizer = AutoTokenizer.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
model = AutoModelForSequenceClassification.from_pretrained("mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
elif not model and not tokenizer: | |
print("Model not loaded correctly. Try again!") | |
return model, tokenizer | |
def sentiment_analysis(model, tokenizer): | |
if model and tokenizer: | |
return pipeline('text-classification', model=model, tokenizer=tokenizer) | |
else: return pipeline('text-classification') | |
# Title the Streamlit app 'Sentiment Analysis' | |
st.title('Sentiment Analysis') | |
st.markdown('Link to the app - [sentiment-analysis-app](https://huggingface.co/spaces/saccharinedreams/sentiment-analysis-app)') | |
# Take in user input | |
user_text = st.text_input('Input text to perform sentiment analysis on here.') | |
# The user can interact with a dropdown menu to choose a sentiment analysis model. | |
dropdown_value = st.selectbox('Select one of the following sentiment analysis models', MODEL_OPTS, index=MODEL_OPTS.index(DEFAULT_OPT)) | |
model, tokenizer = load_model(dropdown_value) | |
# Perform sentiment analysis on the user's input | |
result = sentiment_analysis(model, tokenizer)(user_text) | |
# Display the sentiment analysis results | |
st.write('Sentiment:', result[0]['label'], '; Score:', result[0]['score']) | |