sabman commited on
Commit
cb38940
·
1 Parent(s): b32abdf

move details to bottom

Browse files
Files changed (1) hide show
  1. app.py +16 -8
app.py CHANGED
@@ -14,7 +14,22 @@ with demo:
14
  """
15
  # 🌍 Map Diffuser
16
 
 
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ### Generates images from a given text prompt. The prompts are in the format:
19
 
20
  - `{style} map of {city} with {features}` or
@@ -40,15 +55,8 @@ with demo:
40
  | Watercolor style map of Amsterdam with residential area and highways | <img src="https://www.evernote.com/shard/s542/sh/a22970f5-552f-4872-b738-667e64b28be4/ecjvm3GJBekvShqyebx8RQYH1ZTP4WrZzSqhB5lt6kv5jUjgKH0l7b57KA/deep/0/image.png" width="100" /> |
41
  | Toner style map of Amsterdam with residential area and highways | <img src="https://www.evernote.com/shard/s542/sh/1dfce0dc-8d63-4a83-b590-979ad038198f/1N9mAOsR0GddsULJaAMB8dYU9eR1-McyUXtgOmVFQ4UbX0rwbNfkylI1iQ/deep/0/image.png" width="100" /> |
42
  | Satellite image with forests and residential, no water | <img src="https://www.evernote.com/shard/s542/sh/2c532cf5-e73b-410e-8433-439466211306/Fh8SsltsWRCW_bLGmrj_TfV2vfEwTUbDiUz_bMSn__0EuzmhdTK5F-C1og/deep/0/image.png" width="100" /> |
43
- """
44
  )
45
- input = gr.components.Textbox(label="Enter a text prompt here")
46
- output = gr.components.Image(label="Output Image")
47
- # button to submit the prompt
48
- button = gr.components.Button(label="Generate")
49
- # when the button is clicked, call the generate_image_predictions function
50
- # and pass in the prompt as an argument
51
- button.click(generate_image_predictions, inputs=input, outputs=output)
52
 
53
 
54
  demo.launch()
 
14
  """
15
  # 🌍 Map Diffuser
16
 
17
+ Below we present a Stable Diffusion text to image model that will generate map tiles based on a text prompt. We trained it on just 10k images and prompts based on openstreetmap. Images were from @mapbox satellite images + @StamenDesign water color and toner images + @carto's Voyager style. The region trained was limited to central Europe and more precisely Prague and Amsterdam. This was part of the Hackathon run by Hugging Face & Google to use JAX API with Google Gen4 TPUs that are especially designed to train massive models.
18
 
19
+
20
+ The model tuning led to some surprising results. For example we didn't have any prompts with "ships" or "desert" yet when passed that it tried to add ships to the satellite images 🤷‍♂️...
21
+ """
22
+ )
23
+ input = gr.components.Textbox(label="Enter a text prompt here")
24
+ output = gr.components.Image(label="Output Image")
25
+ # button to submit the prompt
26
+ button = gr.components.Button(label="Generate")
27
+ # when the button is clicked, call the generate_image_predictions function
28
+ # and pass in the prompt as an argument
29
+ button.click(generate_image_predictions, inputs=input, outputs=output)
30
+
31
+ gr.Markdown(
32
+ """
33
  ### Generates images from a given text prompt. The prompts are in the format:
34
 
35
  - `{style} map of {city} with {features}` or
 
55
  | Watercolor style map of Amsterdam with residential area and highways | <img src="https://www.evernote.com/shard/s542/sh/a22970f5-552f-4872-b738-667e64b28be4/ecjvm3GJBekvShqyebx8RQYH1ZTP4WrZzSqhB5lt6kv5jUjgKH0l7b57KA/deep/0/image.png" width="100" /> |
56
  | Toner style map of Amsterdam with residential area and highways | <img src="https://www.evernote.com/shard/s542/sh/1dfce0dc-8d63-4a83-b590-979ad038198f/1N9mAOsR0GddsULJaAMB8dYU9eR1-McyUXtgOmVFQ4UbX0rwbNfkylI1iQ/deep/0/image.png" width="100" /> |
57
  | Satellite image with forests and residential, no water | <img src="https://www.evernote.com/shard/s542/sh/2c532cf5-e73b-410e-8433-439466211306/Fh8SsltsWRCW_bLGmrj_TfV2vfEwTUbDiUz_bMSn__0EuzmhdTK5F-C1og/deep/0/image.png" width="100" /> |
58
+ """
59
  )
 
 
 
 
 
 
 
60
 
61
 
62
  demo.launch()