Spaces:
Sleeping
Sleeping
changed constant to VECTOR_DATABASE_LOCATION
Browse files- config.py +1 -1
- rag_app/get_db_retriever.py +42 -9
- rag_app/structured_tools/structured_tools.py +4 -4
config.py
CHANGED
@@ -6,7 +6,7 @@ from langchain_huggingface import HuggingFaceEndpoint
|
|
6 |
load_dotenv()
|
7 |
|
8 |
SQLITE_FILE_NAME = os.getenv('SOURCES_CACHE')
|
9 |
-
|
10 |
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL")
|
11 |
SEVEN_B_LLM_MODEL = os.getenv("SEVEN_B_LLM_MODEL")
|
12 |
BERT_MODEL = os.getenv("BERT_MODEL")
|
|
|
6 |
load_dotenv()
|
7 |
|
8 |
SQLITE_FILE_NAME = os.getenv('SOURCES_CACHE')
|
9 |
+
VECTOR_DATABASE_LOCATION = os.getenv('VECTOR_DATABASE_LOCATION')
|
10 |
EMBEDDING_MODEL = os.getenv("EMBEDDING_MODEL")
|
11 |
SEVEN_B_LLM_MODEL = os.getenv("SEVEN_B_LLM_MODEL")
|
12 |
BERT_MODEL = os.getenv("BERT_MODEL")
|
rag_app/get_db_retriever.py
CHANGED
@@ -10,19 +10,52 @@ from langchain.chains import RetrievalQA
|
|
10 |
# prompt template
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
from langchain.memory import ConversationBufferMemory
|
13 |
-
from config import EMBEDDING_MODEL
|
14 |
|
15 |
|
16 |
-
def get_db_retriever(
|
17 |
-
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
FAISS_INDEX_PATH=vector_db
|
23 |
-
db = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
return retriever
|
28 |
|
|
|
10 |
# prompt template
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
from langchain.memory import ConversationBufferMemory
|
13 |
+
from config import EMBEDDING_MODEL, VECTOR_DATABASE_LOCATION
|
14 |
|
15 |
|
16 |
+
def get_db_retriever():
|
17 |
+
"""
|
18 |
+
Creates and returns a retriever object based on a FAISS vector database.
|
19 |
|
20 |
+
This function initializes an embedding model and loads a pre-existing FAISS
|
21 |
+
vector database from a local location. It then creates a retriever from this
|
22 |
+
database.
|
|
|
|
|
23 |
|
24 |
+
Returns:
|
25 |
+
--------
|
26 |
+
retriever : langchain.vectorstores.FAISS.VectorStoreRetriever
|
27 |
+
A retriever object that can be used to fetch relevant documents from the
|
28 |
+
vector database.
|
29 |
+
|
30 |
+
Global Variables Used:
|
31 |
+
----------------------
|
32 |
+
EMBEDDING_MODEL : str
|
33 |
+
The identifier for the Hugging Face Hub embedding model to be used.
|
34 |
+
VECTOR_DATABASE_LOCATION : str
|
35 |
+
The local path where the FAISS vector database is stored.
|
36 |
+
|
37 |
+
Dependencies:
|
38 |
+
-------------
|
39 |
+
- langchain_huggingface.HuggingFaceHubEmbeddings
|
40 |
+
- langchain_community.vectorstores.FAISS
|
41 |
|
42 |
+
Note:
|
43 |
+
-----
|
44 |
+
This function assumes that a FAISS vector database has already been created
|
45 |
+
and saved at the location specified by VECTOR_DATABASE_LOCATION.
|
46 |
+
"""
|
47 |
+
|
48 |
+
# Initialize the embedding model
|
49 |
+
embeddings = HuggingFaceHubEmbeddings(repo_id=EMBEDDING_MODEL)
|
50 |
+
|
51 |
+
# Load the FAISS vector database from the local storage
|
52 |
+
db = FAISS.load_local(
|
53 |
+
VECTOR_DATABASE_LOCATION,
|
54 |
+
embeddings,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Create and return a retriever from the loaded database
|
58 |
+
retriever = db.as_retriever()
|
59 |
+
|
60 |
return retriever
|
61 |
|
rag_app/structured_tools/structured_tools.py
CHANGED
@@ -13,9 +13,9 @@ from rag_app.utils.utils import (
|
|
13 |
)
|
14 |
import chromadb
|
15 |
import os
|
16 |
-
from config import db,
|
17 |
|
18 |
-
if not os.path.exists(
|
19 |
get_chroma_vs()
|
20 |
|
21 |
@tool
|
@@ -24,7 +24,7 @@ def memory_search(query:str) -> str:
|
|
24 |
This is your primary source to start your search with checking what you already have learned from the past, before going online."""
|
25 |
# Since we have more than one collections we should change the name of this tool
|
26 |
client = chromadb.PersistentClient(
|
27 |
-
path=
|
28 |
)
|
29 |
|
30 |
collection_name = os.getenv('CONVERSATION_COLLECTION_NAME')
|
@@ -71,7 +71,7 @@ def knowledgeBase_search(query:str) -> str:
|
|
71 |
# #collection_name=collection_name,
|
72 |
# embedding_function=embedding_function,
|
73 |
# )
|
74 |
-
vector_db = Chroma(persist_directory=
|
75 |
retriever = vector_db.as_retriever(search_type="mmr", search_kwargs={'k':5, 'fetch_k':10})
|
76 |
# This is deprecated, changed to invoke
|
77 |
# LangChainDeprecationWarning: The method `BaseRetriever.get_relevant_documents` was deprecated in langchain-core 0.1.46 and will be removed in 0.3.0. Use invoke instead.
|
|
|
13 |
)
|
14 |
import chromadb
|
15 |
import os
|
16 |
+
from config import db, VECTOR_DATABASE_LOCATION, EMBEDDING_MODEL
|
17 |
|
18 |
+
if not os.path.exists(VECTOR_DATABASE_LOCATION):
|
19 |
get_chroma_vs()
|
20 |
|
21 |
@tool
|
|
|
24 |
This is your primary source to start your search with checking what you already have learned from the past, before going online."""
|
25 |
# Since we have more than one collections we should change the name of this tool
|
26 |
client = chromadb.PersistentClient(
|
27 |
+
path=VECTOR_DATABASE_LOCATION,
|
28 |
)
|
29 |
|
30 |
collection_name = os.getenv('CONVERSATION_COLLECTION_NAME')
|
|
|
71 |
# #collection_name=collection_name,
|
72 |
# embedding_function=embedding_function,
|
73 |
# )
|
74 |
+
vector_db = Chroma(persist_directory=VECTOR_DATABASE_LOCATION, embedding_function=embedding_function)
|
75 |
retriever = vector_db.as_retriever(search_type="mmr", search_kwargs={'k':5, 'fetch_k':10})
|
76 |
# This is deprecated, changed to invoke
|
77 |
# LangChainDeprecationWarning: The method `BaseRetriever.get_relevant_documents` was deprecated in langchain-core 0.1.46 and will be removed in 0.3.0. Use invoke instead.
|