Spaces:
Sleeping
Sleeping
done more refactoring
Browse files
config.py
CHANGED
@@ -2,7 +2,8 @@ import os
|
|
2 |
from dotenv import load_dotenv
|
3 |
from rag_app.database.db_handler import DataBaseHandler
|
4 |
from langchain_huggingface import HuggingFaceEndpoint
|
5 |
-
from langchain_huggingface import HuggingFaceHubEmbeddings
|
|
|
6 |
|
7 |
load_dotenv()
|
8 |
|
@@ -16,7 +17,15 @@ HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
|
|
16 |
|
17 |
|
18 |
|
19 |
-
embeddings = HuggingFaceHubEmbeddings(repo_id=EMBEDDING_MODEL)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
db = DataBaseHandler()
|
22 |
|
|
|
2 |
from dotenv import load_dotenv
|
3 |
from rag_app.database.db_handler import DataBaseHandler
|
4 |
from langchain_huggingface import HuggingFaceEndpoint
|
5 |
+
# from langchain_huggingface import HuggingFaceHubEmbeddings
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
|
8 |
load_dotenv()
|
9 |
|
|
|
17 |
|
18 |
|
19 |
|
20 |
+
# embeddings = HuggingFaceHubEmbeddings(repo_id=EMBEDDING_MODEL)
|
21 |
+
|
22 |
+
model_kwargs = {'device': 'cpu'}
|
23 |
+
encode_kwargs = {'normalize_embeddings': False}
|
24 |
+
embeddings = HuggingFaceEmbeddings(
|
25 |
+
model_name=EMBEDDING_MODEL,
|
26 |
+
model_kwargs=model_kwargs,
|
27 |
+
encode_kwargs=encode_kwargs
|
28 |
+
)
|
29 |
|
30 |
db = DataBaseHandler()
|
31 |
|
rag_app/knowledge_base/utils.py
CHANGED
@@ -1,38 +1,30 @@
|
|
1 |
from langchain_core.documents import Document
|
2 |
from chains import generate_document_summary_prompt
|
3 |
-
from config import SEVEN_B_LLM_MODEL
|
4 |
# embeddings functions
|
5 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.embeddings.sentence_transformer import (
|
7 |
SentenceTransformerEmbeddings,
|
8 |
)
|
9 |
import time
|
10 |
-
from langchain_core.
|
11 |
-
from config import EMBEDDING_MODEL
|
12 |
from langchain.retrievers import VectorStoreRetriever
|
13 |
from langchain_core.vectorstores import VectorStoreRetriever
|
14 |
# vectorization functions
|
15 |
from langchain_community.vectorstores import FAISS
|
16 |
from langchain_community.vectorstores import Chroma
|
17 |
from langchain_community.retrievers import BM25Retriever
|
|
|
18 |
|
19 |
-
from rag_app.knowledge_base.utils import create_embeddings
|
20 |
-
from rag_app.utils.generate_summary import generate_description, generate_keywords
|
21 |
-
|
22 |
-
import time
|
23 |
-
import os
|
24 |
-
|
25 |
-
from config import FAISS_INDEX_PATH
|
26 |
|
27 |
from pathlib import Path
|
28 |
from langchain_community.vectorstores import FAISS
|
29 |
from dotenv import load_dotenv
|
30 |
import os
|
31 |
-
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
32 |
import requests
|
33 |
-
from langchain_community.vectorstores import Chroma
|
34 |
-
|
35 |
|
|
|
|
|
|
|
36 |
|
37 |
def create_embeddings(
|
38 |
docs: list[Document],
|
@@ -76,7 +68,8 @@ def create_embeddings(
|
|
76 |
|
77 |
|
78 |
def generate_document_summaries(
|
79 |
-
docs: list[Document]
|
|
|
80 |
) -> list[Document]:
|
81 |
"""
|
82 |
Generates summaries for a list of Document objects and updates their metadata with the summaries.
|
@@ -99,7 +92,7 @@ def generate_document_summaries(
|
|
99 |
|
100 |
for doc in new_docs:
|
101 |
|
102 |
-
genrate_summary_chain = generate_document_summary_prompt |
|
103 |
summary = genrate_summary_chain.invoke(
|
104 |
{"document":str(doc.metadata)}
|
105 |
)
|
@@ -155,105 +148,4 @@ def build_vector_store(
|
|
155 |
result = f"built vectore store at {FAISS_INDEX_PATH}"
|
156 |
return result
|
157 |
|
158 |
-
|
159 |
-
query:str,
|
160 |
-
path_to_db:str,
|
161 |
-
embedding_model:str,
|
162 |
-
hf_api_key:str,
|
163 |
-
num_docs:int=5
|
164 |
-
) -> list:
|
165 |
-
""" Re-ranks the similarity search results and returns top-k highest ranked docs
|
166 |
-
|
167 |
-
Args:
|
168 |
-
query (str): The search query
|
169 |
-
path_to_db (str): Path to the vectorstore database
|
170 |
-
embedding_model (str): Embedding model used in the vector store
|
171 |
-
num_docs (int): Number of documents to return
|
172 |
-
|
173 |
-
Returns: A list of documents with the highest rank
|
174 |
-
"""
|
175 |
-
assert num_docs <= 10, "num_docs should be less than similarity search results"
|
176 |
-
|
177 |
-
embeddings = HuggingFaceInferenceAPIEmbeddings(
|
178 |
-
api_key=hf_api_key,
|
179 |
-
model_name=embedding_model
|
180 |
-
)
|
181 |
-
|
182 |
-
# Load the vectorstore database
|
183 |
-
db = FAISS.load_local(
|
184 |
-
folder_path=path_to_db,
|
185 |
-
embeddings=embeddings,
|
186 |
-
allow_dangerous_deserialization=True
|
187 |
-
)
|
188 |
-
|
189 |
-
# Get 10 documents based on similarity search
|
190 |
-
docs = db.similarity_search(query=query, k=10)
|
191 |
-
|
192 |
-
# Add the page_content, description and title together
|
193 |
-
passages = [doc.page_content + "\n" + doc.metadata.get('title', "") +"\n"+ doc.metadata.get('description', "")
|
194 |
-
for doc in docs]
|
195 |
-
|
196 |
-
# Prepare the payload
|
197 |
-
inputs = [{"text": query, "text_pair": passage} for passage in passages]
|
198 |
-
|
199 |
-
API_URL = "https://api-inference.huggingface.co/models/deepset/gbert-base-germandpr-reranking"
|
200 |
-
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
201 |
-
|
202 |
-
response = requests.post(API_URL, headers=headers, json=inputs)
|
203 |
-
scores = response.json()
|
204 |
-
|
205 |
-
try:
|
206 |
-
relevance_scores = [item[1]['score'] for item in scores]
|
207 |
-
except ValueError as e:
|
208 |
-
print('Could not get the relevance_scores -> something might be wrong with the json output')
|
209 |
-
return
|
210 |
-
|
211 |
-
if relevance_scores:
|
212 |
-
ranked_results = sorted(zip(docs, passages, relevance_scores), key=lambda x: x[2], reverse=True)
|
213 |
-
top_k_results = ranked_results[:num_docs]
|
214 |
-
return [doc for doc, _, _ in top_k_results]
|
215 |
-
|
216 |
-
|
217 |
-
def get_reranked_docs_chroma(query:str,
|
218 |
-
path_to_db:str,
|
219 |
-
embedding_model:str,
|
220 |
-
hf_api_key:str,
|
221 |
-
reranking_hf_url:str = "https://api-inference.huggingface.co/models/sentence-transformers/all-mpnet-base-v2",
|
222 |
-
num_docs:int=5) -> list:
|
223 |
-
""" Re-ranks the similarity search results and returns top-k highest ranked docs
|
224 |
-
|
225 |
-
Args:
|
226 |
-
query (str): The search query
|
227 |
-
path_to_db (str): Path to the vectorstore database
|
228 |
-
embedding_model (str): Embedding model used in the vector store
|
229 |
-
num_docs (int): Number of documents to return
|
230 |
-
|
231 |
-
Returns: A list of documents with the highest rank
|
232 |
-
"""
|
233 |
-
embeddings = HuggingFaceInferenceAPIEmbeddings(api_key=hf_api_key,
|
234 |
-
model_name=embedding_model)
|
235 |
-
# Load the vectorstore database
|
236 |
-
db = Chroma(persist_directory=path_to_db, embedding_function=embeddings)
|
237 |
-
|
238 |
-
# Get k documents based on similarity search
|
239 |
-
sim_docs = db.similarity_search(query=query, k=10)
|
240 |
-
|
241 |
-
passages = [doc.page_content for doc in sim_docs]
|
242 |
-
|
243 |
-
# Prepare the payload
|
244 |
-
payload = {"inputs":
|
245 |
-
{"source_sentence": query,
|
246 |
-
"sentences": passages}}
|
247 |
-
|
248 |
-
headers = {"Authorization": f"Bearer {hf_api_key}"}
|
249 |
-
|
250 |
-
response = requests.post(url=reranking_hf_url, headers=headers, json=payload)
|
251 |
-
print(f'{response = }')
|
252 |
-
if response.status_code != 200:
|
253 |
-
print('Something went wrong with the response')
|
254 |
-
return
|
255 |
-
|
256 |
-
similarity_scores = response.json()
|
257 |
-
ranked_results = sorted(zip(sim_docs, passages, similarity_scores), key=lambda x: x[2], reverse=True)
|
258 |
-
top_k_results = ranked_results[:num_docs]
|
259 |
-
return [doc for doc, _, _ in top_k_results]
|
|
|
1 |
from langchain_core.documents import Document
|
2 |
from chains import generate_document_summary_prompt
|
|
|
3 |
# embeddings functions
|
4 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
5 |
from langchain_community.embeddings.sentence_transformer import (
|
6 |
SentenceTransformerEmbeddings,
|
7 |
)
|
8 |
import time
|
9 |
+
from langchain_core.language_models import BaseChatModel
|
|
|
10 |
from langchain.retrievers import VectorStoreRetriever
|
11 |
from langchain_core.vectorstores import VectorStoreRetriever
|
12 |
# vectorization functions
|
13 |
from langchain_community.vectorstores import FAISS
|
14 |
from langchain_community.vectorstores import Chroma
|
15 |
from langchain_community.retrievers import BM25Retriever
|
16 |
+
from langchain_community.embeddings import HuggingFaceInferenceAPIEmbeddings
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
from pathlib import Path
|
20 |
from langchain_community.vectorstores import FAISS
|
21 |
from dotenv import load_dotenv
|
22 |
import os
|
|
|
23 |
import requests
|
|
|
|
|
24 |
|
25 |
+
from rag_app.knowledge_base.utils import create_embeddings
|
26 |
+
from rag_app.utils.generate_summary import generate_description, generate_keywords
|
27 |
+
from config import EMBEDDING_MODEL, FAISS_INDEX_PATH, SEVEN_B_LLM_MODEL
|
28 |
|
29 |
def create_embeddings(
|
30 |
docs: list[Document],
|
|
|
68 |
|
69 |
|
70 |
def generate_document_summaries(
|
71 |
+
docs: list[Document],
|
72 |
+
llm:BaseChatModel= SEVEN_B_LLM_MODEL,
|
73 |
) -> list[Document]:
|
74 |
"""
|
75 |
Generates summaries for a list of Document objects and updates their metadata with the summaries.
|
|
|
92 |
|
93 |
for doc in new_docs:
|
94 |
|
95 |
+
genrate_summary_chain = generate_document_summary_prompt | llm
|
96 |
summary = genrate_summary_chain.invoke(
|
97 |
{"document":str(doc.metadata)}
|
98 |
)
|
|
|
148 |
result = f"built vectore store at {FAISS_INDEX_PATH}"
|
149 |
return result
|
150 |
|
151 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rag_app/vector_store_handler/vectorstores.py
CHANGED
@@ -146,32 +146,43 @@ class ChromaVectorStore(BaseVectorStore):
|
|
146 |
query:str,
|
147 |
num_docs:int=5
|
148 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
# Add the page_content, description and title together
|
154 |
-
passages = [doc.page_content
|
155 |
-
|
156 |
# Prepare the payload
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
160 |
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
|
|
161 |
|
162 |
-
response = requests.post(
|
163 |
-
|
|
|
|
|
|
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
return
|
170 |
|
171 |
-
|
172 |
-
ranked_results = sorted(zip(docs, passages, relevance_scores), key=lambda x: x[2], reverse=True)
|
173 |
-
top_k_results = ranked_results[:num_docs]
|
174 |
-
return [doc for doc, _, _ in top_k_results]
|
175 |
|
176 |
class FAISSVectorStore(BaseVectorStore):
|
177 |
"""
|
@@ -187,7 +198,7 @@ class FAISSVectorStore(BaseVectorStore):
|
|
187 |
"""
|
188 |
self.vectorstore = FAISS.from_documents(texts, self.embeddings)
|
189 |
|
190 |
-
def load_existing_vectorstore(self):
|
191 |
"""
|
192 |
Load an existing FAISS vector store from the persist directory.
|
193 |
|
@@ -195,7 +206,7 @@ class FAISSVectorStore(BaseVectorStore):
|
|
195 |
ValueError: If persist_directory is not set.
|
196 |
"""
|
197 |
if self.persist_directory:
|
198 |
-
self.vectorstore = FAISS.load_local(self.persist_directory, self.embeddings, allow_dangerous_deserialization
|
199 |
else:
|
200 |
raise ValueError("Persist directory is required for loading FAISS.")
|
201 |
|
|
|
146 |
query:str,
|
147 |
num_docs:int=5
|
148 |
):
|
149 |
+
""" Re-ranks the similarity search results and returns top-k highest ranked docs
|
150 |
+
|
151 |
+
Args:
|
152 |
+
query (str): The search query
|
153 |
+
path_to_db (str): Path to the vectorstore database
|
154 |
+
embedding_model (str): Embedding model used in the vector store
|
155 |
+
num_docs (int): Number of documents to return
|
156 |
|
157 |
+
Returns: A list of documents with the highest rank
|
158 |
+
"""
|
159 |
+
|
160 |
+
# Get k documents based on similarity search
|
161 |
+
sim_docs = self.vectorstore.similarity_search(query=query, k=10)
|
162 |
|
163 |
# Add the page_content, description and title together
|
164 |
+
passages = [doc.page_content for doc in sim_docs]
|
165 |
+
|
166 |
# Prepare the payload
|
167 |
+
payload = {"inputs":
|
168 |
+
{"source_sentence": query,
|
169 |
+
"sentences": passages}}
|
170 |
+
|
171 |
headers = {"Authorization": f"Bearer {HUGGINGFACEHUB_API_TOKEN}"}
|
172 |
+
reranking_hf_url:str = "https://api-inference.huggingface.co/models/sentence-transformers/all-mpnet-base-v2"
|
173 |
|
174 |
+
response = requests.post(url=reranking_hf_url, headers=headers, json=payload)
|
175 |
+
print(f'{response = }')
|
176 |
+
if response.status_code != 200:
|
177 |
+
print('Something went wrong with the response')
|
178 |
+
return
|
179 |
|
180 |
+
similarity_scores = response.json()
|
181 |
+
ranked_results = sorted(zip(sim_docs, passages, similarity_scores), key=lambda x: x[2], reverse=True)
|
182 |
+
top_k_results = ranked_results[:num_docs]
|
183 |
+
return [doc for doc, _, _ in top_k_results]
|
|
|
184 |
|
185 |
+
|
|
|
|
|
|
|
186 |
|
187 |
class FAISSVectorStore(BaseVectorStore):
|
188 |
"""
|
|
|
198 |
"""
|
199 |
self.vectorstore = FAISS.from_documents(texts, self.embeddings)
|
200 |
|
201 |
+
def load_existing_vectorstore(self,allow_dangerous_deserialization:bool=False):
|
202 |
"""
|
203 |
Load an existing FAISS vector store from the persist directory.
|
204 |
|
|
|
206 |
ValueError: If persist_directory is not set.
|
207 |
"""
|
208 |
if self.persist_directory:
|
209 |
+
self.vectorstore = FAISS.load_local(self.persist_directory, self.embeddings, allow_dangerous_deserialization)
|
210 |
else:
|
211 |
raise ValueError("Persist directory is required for loading FAISS.")
|
212 |
|
tests/vector_store_handler/test_vectorstores.py
CHANGED
@@ -1,14 +1,16 @@
|
|
1 |
import unittest
|
2 |
from unittest.mock import MagicMock, patch
|
3 |
-
from langchain.embeddings import OpenAIEmbeddings
|
4 |
-
from
|
|
|
|
|
5 |
|
6 |
# Update the import to reflect your project structure
|
7 |
from rag_app.vector_store_handler.vectorstores import BaseVectorStore, ChromaVectorStore, FAISSVectorStore
|
8 |
|
9 |
class TestBaseVectorStore(unittest.TestCase):
|
10 |
def setUp(self):
|
11 |
-
self.embedding_model = MagicMock(spec=
|
12 |
self.base_store = BaseVectorStore(self.embedding_model, "test_dir")
|
13 |
|
14 |
def test_init(self):
|
@@ -34,7 +36,7 @@ class TestBaseVectorStore(unittest.TestCase):
|
|
34 |
|
35 |
class TestChromaVectorStore(unittest.TestCase):
|
36 |
def setUp(self):
|
37 |
-
self.embedding_model = MagicMock(spec=
|
38 |
self.chroma_store = ChromaVectorStore(self.embedding_model, "test_dir")
|
39 |
|
40 |
@patch('rag_app.vector_store_handler.vectorstores.Chroma')
|
@@ -62,7 +64,7 @@ class TestChromaVectorStore(unittest.TestCase):
|
|
62 |
|
63 |
class TestFAISSVectorStore(unittest.TestCase):
|
64 |
def setUp(self):
|
65 |
-
self.embedding_model = MagicMock(spec=
|
66 |
self.faiss_store = FAISSVectorStore(self.embedding_model, "test_dir")
|
67 |
|
68 |
@patch('rag_app.vector_store_handler.vectorstores.FAISS')
|
|
|
1 |
import unittest
|
2 |
from unittest.mock import MagicMock, patch
|
3 |
+
# from langchain.embeddings import OpenAIEmbeddings
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
# from langchain.schema import Document
|
6 |
+
from langchain_core.documents import Document
|
7 |
|
8 |
# Update the import to reflect your project structure
|
9 |
from rag_app.vector_store_handler.vectorstores import BaseVectorStore, ChromaVectorStore, FAISSVectorStore
|
10 |
|
11 |
class TestBaseVectorStore(unittest.TestCase):
|
12 |
def setUp(self):
|
13 |
+
self.embedding_model = MagicMock(spec=HuggingFaceEmbeddings)
|
14 |
self.base_store = BaseVectorStore(self.embedding_model, "test_dir")
|
15 |
|
16 |
def test_init(self):
|
|
|
36 |
|
37 |
class TestChromaVectorStore(unittest.TestCase):
|
38 |
def setUp(self):
|
39 |
+
self.embedding_model = MagicMock(spec=HuggingFaceEmbeddings)
|
40 |
self.chroma_store = ChromaVectorStore(self.embedding_model, "test_dir")
|
41 |
|
42 |
@patch('rag_app.vector_store_handler.vectorstores.Chroma')
|
|
|
64 |
|
65 |
class TestFAISSVectorStore(unittest.TestCase):
|
66 |
def setUp(self):
|
67 |
+
self.embedding_model = MagicMock(spec=HuggingFaceEmbeddings)
|
68 |
self.faiss_store = FAISSVectorStore(self.embedding_model, "test_dir")
|
69 |
|
70 |
@patch('rag_app.vector_store_handler.vectorstores.FAISS')
|