Spaces:
Sleeping
Sleeping
cleaned up refactored the tools and agent
Browse files
innovation_pathfinder_ai/source_container/container.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
all_sources = []
|
innovation_pathfinder_ai/structured_tools/structured_tools.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.tools import BaseTool, StructuredTool, tool
|
2 |
+
from langchain.retrievers import ArxivRetriever
|
3 |
+
from langchain_community.utilities import SerpAPIWrapper
|
4 |
+
import arxiv
|
5 |
+
|
6 |
+
# hacky and should be replaced with a database
|
7 |
+
from innovation_pathfinder_ai.source_container.container import (
|
8 |
+
all_sources
|
9 |
+
)
|
10 |
+
|
11 |
+
@tool
|
12 |
+
def arxiv_search(query: str) -> str:
|
13 |
+
"""Using the arxiv search and collects metadata."""
|
14 |
+
# return "LangChain"
|
15 |
+
global all_sources
|
16 |
+
arxiv_retriever = ArxivRetriever(load_max_docs=2)
|
17 |
+
data = arxiv_retriever.invoke(query)
|
18 |
+
meta_data = [i.metadata for i in data]
|
19 |
+
# meta_data += all_sources
|
20 |
+
# all_sources += meta_data
|
21 |
+
all_sources += meta_data
|
22 |
+
|
23 |
+
# formatted_info = format_info(entry_id, published, title, authors)
|
24 |
+
|
25 |
+
# formatted_info = format_info_list(all_sources)
|
26 |
+
|
27 |
+
return meta_data.__str__()
|
28 |
+
|
29 |
+
@tool
|
30 |
+
def get_arxiv_paper(paper_id:str) -> None:
|
31 |
+
"""Download a paper from axriv to download a paper please input
|
32 |
+
the axriv id such as "1605.08386v1" This tool is named get_arxiv_paper
|
33 |
+
If you input "http://arxiv.org/abs/2312.02813", This will break the code. Also only do
|
34 |
+
"2312.02813". In addition please download one paper at a time. Pleaase keep the inputs/output
|
35 |
+
free of additional information only have the id.
|
36 |
+
"""
|
37 |
+
# code from https://lukasschwab.me/arxiv.py/arxiv.html
|
38 |
+
paper = next(arxiv.Client().results(arxiv.Search(id_list=[paper_id])))
|
39 |
+
|
40 |
+
number_without_period = paper_id.replace('.', '')
|
41 |
+
|
42 |
+
# Download the PDF to a specified directory with a custom filename.
|
43 |
+
paper.download_pdf(dirpath="./mydir", filename=f"{number_without_period}.pdf")
|
44 |
+
|
45 |
+
|
46 |
+
@tool
|
47 |
+
def google_search(query: str) -> str:
|
48 |
+
"""Using the google search and collects metadata."""
|
49 |
+
# return "LangChain"
|
50 |
+
global all_sources
|
51 |
+
|
52 |
+
x = SerpAPIWrapper()
|
53 |
+
search_results:dict = x.results(query)
|
54 |
+
|
55 |
+
|
56 |
+
organic_source = search_results['organic_results']
|
57 |
+
# formatted_string = "Title: {title}, link: {link}, snippet: {snippet}".format(**organic_source)
|
58 |
+
cleaner_sources = ["Title: {title}, link: {link}, snippet: {snippet}".format(**i) for i in organic_source]
|
59 |
+
|
60 |
+
all_sources += cleaner_sources
|
61 |
+
|
62 |
+
return cleaner_sources.__str__()
|
mixtral_agent.py
CHANGED
@@ -1,31 +1,29 @@
|
|
1 |
# LangChain supports many other chat models. Here, we're using Ollama
|
2 |
from langchain_community.chat_models import ChatOllama
|
3 |
-
from langchain_core.output_parsers import StrOutputParser
|
4 |
from langchain_core.prompts import ChatPromptTemplate
|
5 |
-
from langchain.tools.retriever import create_retriever_tool
|
6 |
-
from langchain_community.utilities import SerpAPIWrapper
|
7 |
-
from langchain.retrievers import ArxivRetriever
|
8 |
-
from langchain_core.tools import Tool
|
9 |
from langchain import hub
|
10 |
-
from langchain.agents import AgentExecutor
|
11 |
from langchain.agents.format_scratchpad import format_log_to_str
|
12 |
from langchain.agents.output_parsers import (
|
13 |
ReActJsonSingleInputOutputParser,
|
14 |
)
|
15 |
# Import things that are needed generically
|
16 |
-
from langchain.pydantic_v1 import BaseModel, Field
|
17 |
-
from langchain.tools import BaseTool, StructuredTool, tool
|
18 |
from typing import List, Dict
|
19 |
-
from datetime import datetime
|
20 |
from langchain.tools.render import render_text_description
|
21 |
import os
|
22 |
-
import arxiv
|
23 |
-
|
24 |
import dotenv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
dotenv.load_dotenv()
|
27 |
|
28 |
-
|
29 |
OLLMA_BASE_URL = os.getenv("OLLMA_BASE_URL")
|
30 |
|
31 |
|
@@ -37,89 +35,6 @@ llm = ChatOllama(
|
|
37 |
)
|
38 |
prompt = ChatPromptTemplate.from_template("Tell me a short joke about {topic}")
|
39 |
|
40 |
-
arxiv_retriever = ArxivRetriever(load_max_docs=2)
|
41 |
-
|
42 |
-
from zipfile import ZipFile
|
43 |
-
|
44 |
-
def unzip_file(zip_file: str, extract_to: str) -> None:
|
45 |
-
with ZipFile(zip_file, 'r') as zip_ref:
|
46 |
-
zip_ref.extractall(extract_to)
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
def format_info_list(info_list: List[Dict[str, str]]) -> str:
|
51 |
-
"""
|
52 |
-
Format a list of dictionaries containing information into a single string.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
info_list (List[Dict[str, str]]): A list of dictionaries containing information.
|
56 |
-
|
57 |
-
Returns:
|
58 |
-
str: A formatted string containing the information from the list.
|
59 |
-
"""
|
60 |
-
formatted_strings = []
|
61 |
-
for info_dict in info_list:
|
62 |
-
formatted_string = "|"
|
63 |
-
for key, value in info_dict.items():
|
64 |
-
if isinstance(value, datetime.date):
|
65 |
-
value = value.strftime('%Y-%m-%d')
|
66 |
-
formatted_string += f"'{key}': '{value}', "
|
67 |
-
formatted_string = formatted_string.rstrip(', ') + "|"
|
68 |
-
formatted_strings.append(formatted_string)
|
69 |
-
return '\n'.join(formatted_strings)
|
70 |
-
|
71 |
-
@tool
|
72 |
-
def arxiv_search(query: str) -> str:
|
73 |
-
"""Using the arxiv search and collects metadata."""
|
74 |
-
# return "LangChain"
|
75 |
-
global all_sources
|
76 |
-
data = arxiv_retriever.invoke(query)
|
77 |
-
meta_data = [i.metadata for i in data]
|
78 |
-
# meta_data += all_sources
|
79 |
-
# all_sources += meta_data
|
80 |
-
all_sources += meta_data
|
81 |
-
|
82 |
-
# formatted_info = format_info(entry_id, published, title, authors)
|
83 |
-
|
84 |
-
# formatted_info = format_info_list(all_sources)
|
85 |
-
|
86 |
-
return meta_data.__str__()
|
87 |
-
|
88 |
-
@tool
|
89 |
-
def google_search(query: str) -> str:
|
90 |
-
"""Using the google search and collects metadata."""
|
91 |
-
# return "LangChain"
|
92 |
-
global all_sources
|
93 |
-
|
94 |
-
x = SerpAPIWrapper()
|
95 |
-
search_results:dict = x.results(query)
|
96 |
-
|
97 |
-
|
98 |
-
organic_source = search_results['organic_results']
|
99 |
-
# formatted_string = "Title: {title}, link: {link}, snippet: {snippet}".format(**organic_source)
|
100 |
-
cleaner_sources = ["Title: {title}, link: {link}, snippet: {snippet}".format(**i) for i in organic_source]
|
101 |
-
|
102 |
-
all_sources += cleaner_sources
|
103 |
-
|
104 |
-
return cleaner_sources.__str__()
|
105 |
-
# return organic_source
|
106 |
-
|
107 |
-
@tool
|
108 |
-
def get_arxiv_paper(paper_id:str) -> None:
|
109 |
-
"""Download a paper from axriv to download a paper please input
|
110 |
-
the axriv id such as "1605.08386v1" This tool is named get_arxiv_paper
|
111 |
-
If you input "http://arxiv.org/abs/2312.02813", This will break the code. Also only do
|
112 |
-
"2312.02813". In addition please download one paper at a time. Pleaase keep the inputs/output
|
113 |
-
free of additional information only have the id.
|
114 |
-
"""
|
115 |
-
# code from https://lukasschwab.me/arxiv.py/arxiv.html
|
116 |
-
paper = next(arxiv.Client().results(arxiv.Search(id_list=[paper_id])))
|
117 |
-
|
118 |
-
number_without_period = paper_id.replace('.', '')
|
119 |
-
|
120 |
-
# Download the PDF to a specified directory with a custom filename.
|
121 |
-
paper.download_pdf(dirpath="./mydir", filename=f"{number_without_period}.pdf")
|
122 |
-
|
123 |
|
124 |
tools = [
|
125 |
arxiv_search,
|
@@ -127,22 +42,6 @@ tools = [
|
|
127 |
get_arxiv_paper,
|
128 |
]
|
129 |
|
130 |
-
# tools = [
|
131 |
-
# create_retriever_tool(
|
132 |
-
# retriever,
|
133 |
-
# "search arxiv's database for",
|
134 |
-
# "Use this to recomend the user a paper to read Unless stated please choose the most recent models",
|
135 |
-
# # "Searches and returns excerpts from the 2022 State of the Union.",
|
136 |
-
# ),
|
137 |
-
|
138 |
-
# Tool(
|
139 |
-
# name="SerpAPI",
|
140 |
-
# description="A low-cost Google Search API. Useful for when you need to answer questions about current events. Input should be a search query.",
|
141 |
-
# func=SerpAPIWrapper().run,
|
142 |
-
# )
|
143 |
-
|
144 |
-
# ]
|
145 |
-
|
146 |
|
147 |
prompt = hub.pull("hwchase17/react-json")
|
148 |
prompt = prompt.partial(
|
@@ -150,9 +49,9 @@ prompt = prompt.partial(
|
|
150 |
tool_names=", ".join([t.name for t in tools]),
|
151 |
)
|
152 |
|
153 |
-
|
154 |
# define the agent
|
155 |
-
chat_model_with_stop =
|
156 |
agent = (
|
157 |
{
|
158 |
"input": lambda x: x["input"],
|
@@ -176,7 +75,6 @@ agent_executor = AgentExecutor(
|
|
176 |
if __name__ == "__main__":
|
177 |
|
178 |
# global variable for collecting sources
|
179 |
-
all_sources = []
|
180 |
|
181 |
input = agent_executor.invoke(
|
182 |
{
|
|
|
1 |
# LangChain supports many other chat models. Here, we're using Ollama
|
2 |
from langchain_community.chat_models import ChatOllama
|
|
|
3 |
from langchain_core.prompts import ChatPromptTemplate
|
|
|
|
|
|
|
|
|
4 |
from langchain import hub
|
5 |
+
from langchain.agents import AgentExecutor
|
6 |
from langchain.agents.format_scratchpad import format_log_to_str
|
7 |
from langchain.agents.output_parsers import (
|
8 |
ReActJsonSingleInputOutputParser,
|
9 |
)
|
10 |
# Import things that are needed generically
|
|
|
|
|
11 |
from typing import List, Dict
|
|
|
12 |
from langchain.tools.render import render_text_description
|
13 |
import os
|
|
|
|
|
14 |
import dotenv
|
15 |
+
from innovation_pathfinder_ai.structured_tools.structured_tools import (
|
16 |
+
arxiv_search, get_arxiv_paper, google_search
|
17 |
+
)
|
18 |
+
|
19 |
+
# hacky and should be replaced with a database
|
20 |
+
from innovation_pathfinder_ai.source_container.container import (
|
21 |
+
all_sources
|
22 |
+
)
|
23 |
+
|
24 |
|
25 |
dotenv.load_dotenv()
|
26 |
|
|
|
27 |
OLLMA_BASE_URL = os.getenv("OLLMA_BASE_URL")
|
28 |
|
29 |
|
|
|
35 |
)
|
36 |
prompt = ChatPromptTemplate.from_template("Tell me a short joke about {topic}")
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
tools = [
|
40 |
arxiv_search,
|
|
|
42 |
get_arxiv_paper,
|
43 |
]
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
prompt = hub.pull("hwchase17/react-json")
|
47 |
prompt = prompt.partial(
|
|
|
49 |
tool_names=", ".join([t.name for t in tools]),
|
50 |
)
|
51 |
|
52 |
+
|
53 |
# define the agent
|
54 |
+
chat_model_with_stop = llm.bind(stop=["\nObservation"])
|
55 |
agent = (
|
56 |
{
|
57 |
"input": lambda x: x["input"],
|
|
|
75 |
if __name__ == "__main__":
|
76 |
|
77 |
# global variable for collecting sources
|
|
|
78 |
|
79 |
input = agent_executor.invoke(
|
80 |
{
|