Spaces:
Runtime error
Runtime error
changed to FAISS vs
Browse files
app.py
CHANGED
@@ -4,11 +4,7 @@ import time
|
|
4 |
import boto3
|
5 |
from botocore import UNSIGNED
|
6 |
from botocore.client import Config
|
7 |
-
|
8 |
-
from langchain.document_loaders import WebBaseLoader
|
9 |
-
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
12 |
|
13 |
from langchain.llms import HuggingFaceHub
|
14 |
model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":1024})
|
@@ -16,16 +12,19 @@ model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={
|
|
16 |
from langchain.embeddings import HuggingFaceHubEmbeddings
|
17 |
embeddings = HuggingFaceHubEmbeddings()
|
18 |
|
19 |
-
from langchain.vectorstores import
|
20 |
|
21 |
from langchain.chains import RetrievalQA
|
22 |
|
23 |
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
24 |
-
s3.download_file('rad-rag-demos', 'vectorstores/
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
29 |
|
30 |
global qa
|
31 |
qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever)
|
|
|
4 |
import boto3
|
5 |
from botocore import UNSIGNED
|
6 |
from botocore.client import Config
|
7 |
+
import zipfile
|
|
|
|
|
|
|
|
|
8 |
|
9 |
from langchain.llms import HuggingFaceHub
|
10 |
model_id = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature":0.1, "max_new_tokens":1024})
|
|
|
12 |
from langchain.embeddings import HuggingFaceHubEmbeddings
|
13 |
embeddings = HuggingFaceHubEmbeddings()
|
14 |
|
15 |
+
from langchain.vectorstores import FAISS
|
16 |
|
17 |
from langchain.chains import RetrievalQA
|
18 |
|
19 |
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
|
20 |
+
s3.download_file('rad-rag-demos', 'vectorstores/faiss_db_ray.zip', './chroma_db/faiss_db_ray.zip')
|
21 |
+
with zipfile.ZipFile('./chroma_db/faiss_db_ray.zip', 'r') as zip_ref:
|
22 |
+
zip_ref.extractall('./chroma_db/')
|
23 |
+
|
24 |
+
FAISS_INDEX_PATH='./chroma_db/faiss_db_ray'
|
25 |
+
embeddings = HuggingFaceEmbeddings("multi-qa-mpnet-base-dot-v1")
|
26 |
+
db = FAISS.load_local(FAISS_INDEX_PATH, embeddings)
|
27 |
+
retriever = db.as_retriever(search_type = "mmr")
|
28 |
|
29 |
global qa
|
30 |
qa = RetrievalQA.from_chain_type(llm=model_id, chain_type="stuff", retriever=retriever)
|