Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
2 |
+
from diffusers.utils import load_image
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import numpy as np
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
prompt = "aerial view, a futuristic research complex in a bright foggy jungle, hard lighting"
|
9 |
+
negative_prompt = 'low quality, bad quality, sketches'
|
10 |
+
|
11 |
+
image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/hf-logo.png")
|
12 |
+
|
13 |
+
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
14 |
+
|
15 |
+
controlnet = ControlNetModel.from_pretrained(
|
16 |
+
"diffusers/controlnet-canny-sdxl-1.0",
|
17 |
+
torch_dtype=torch.float16
|
18 |
+
)
|
19 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
20 |
+
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
21 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
22 |
+
controlnet=controlnet,
|
23 |
+
vae=vae,
|
24 |
+
torch_dtype=torch.float16,
|
25 |
+
)
|
26 |
+
pipe.enable_model_cpu_offload()
|
27 |
+
|
28 |
+
image = np.array(image)
|
29 |
+
image = cv2.Canny(image, 100, 200)
|
30 |
+
image = image[:, :, None]
|
31 |
+
image = np.concatenate([image, image, image], axis=2)
|
32 |
+
image = Image.fromarray(image)
|
33 |
+
|
34 |
+
|