Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import torch
|
|
| 7 |
import gradio as gr
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
from peft import PeftModel
|
|
|
|
| 10 |
|
| 11 |
# reduce CPU overload on free tier
|
| 12 |
torch.set_num_threads(1)
|
|
@@ -24,8 +25,14 @@ print("Loading model...")
|
|
| 24 |
# βββββββββββββββββββββββββ
|
| 25 |
# Load base model
|
| 26 |
# βββββββββββββββββββββββββ
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
model = AutoModelForCausalLM.from_pretrained(
|
| 28 |
BASE_MODEL,
|
|
|
|
| 29 |
device_map="cpu",
|
| 30 |
torch_dtype=torch.float32,
|
| 31 |
trust_remote_code=True,
|
|
@@ -39,7 +46,6 @@ print("Merging LoRA...")
|
|
| 39 |
model = model.merge_and_unload()
|
| 40 |
|
| 41 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 42 |
-
|
| 43 |
model.eval()
|
| 44 |
print("Model ready")
|
| 45 |
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 9 |
from peft import PeftModel
|
| 10 |
+
from transformers import AutoConfig
|
| 11 |
|
| 12 |
# reduce CPU overload on free tier
|
| 13 |
torch.set_num_threads(1)
|
|
|
|
| 25 |
# βββββββββββββββββββββββββ
|
| 26 |
# Load base model
|
| 27 |
# βββββββββββββββββββββββββ
|
| 28 |
+
|
| 29 |
+
# load config first and REMOVE quantization
|
| 30 |
+
config = AutoConfig.from_pretrained(BASE_MODEL, trust_remote_code=True)
|
| 31 |
+
config.quantization_config = None # π΄ important fix
|
| 32 |
+
|
| 33 |
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
BASE_MODEL,
|
| 35 |
+
config=config,
|
| 36 |
device_map="cpu",
|
| 37 |
torch_dtype=torch.float32,
|
| 38 |
trust_remote_code=True,
|
|
|
|
| 46 |
model = model.merge_and_unload()
|
| 47 |
|
| 48 |
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
|
|
|
|
| 49 |
model.eval()
|
| 50 |
print("Model ready")
|
| 51 |
|