Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,59 +1,61 @@
|
|
| 1 |
-
# app.py
|
| 2 |
-
# Stable CPU-only Hugging Face Space
|
| 3 |
-
# Phi-3-mini + LoRA (NO bitsandbytes, NO SSR issues)
|
| 4 |
-
|
| 5 |
import warnings
|
| 6 |
-
warnings.filterwarnings("ignore"
|
| 7 |
|
| 8 |
import torch
|
| 9 |
import gradio as gr
|
| 10 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 11 |
from peft import PeftModel
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
# Config
|
| 15 |
-
# βββββββββββββββββββββββββββββββββββββββββββββ
|
| 16 |
BASE_MODEL = "unsloth/Phi-3-mini-4k-instruct"
|
| 17 |
LORA_PATH = "saadkhi/SQL_Chat_finetuned_model"
|
| 18 |
|
| 19 |
MAX_NEW_TOKENS = 180
|
| 20 |
-
TEMPERATURE = 0.0
|
| 21 |
-
DO_SAMPLE = False
|
| 22 |
-
|
| 23 |
-
# βββββββββββββββββββββββββββββββββββββββββββββ
|
| 24 |
-
# Load model & tokenizer (CPU SAFE)
|
| 25 |
-
# βββββββββββββββββββββββββββββββββββββββββββββ
|
| 26 |
-
print("Loading base model on CPU...")
|
| 27 |
-
|
| 28 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 29 |
-
BASE_MODEL,
|
| 30 |
-
device_map="cpu",
|
| 31 |
-
torch_dtype=torch.float32,
|
| 32 |
-
trust_remote_code=True,
|
| 33 |
-
low_cpu_mem_usage=True,
|
| 34 |
-
)
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
# Inference
|
| 49 |
-
# βββββββββββββββββββββββββββββββββββββββββββββ
|
| 50 |
-
def generate_sql(question: str) -> str:
|
| 51 |
-
if not question or not question.strip():
|
| 52 |
-
return "Please enter a SQL-related question."
|
| 53 |
|
| 54 |
-
messages = [
|
| 55 |
-
{"role": "user", "content": question.strip()}
|
| 56 |
-
]
|
| 57 |
|
| 58 |
input_ids = tokenizer.apply_chat_template(
|
| 59 |
messages,
|
|
@@ -66,60 +68,29 @@ def generate_sql(question: str) -> str:
|
|
| 66 |
output_ids = model.generate(
|
| 67 |
input_ids=input_ids,
|
| 68 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 69 |
-
temperature=
|
| 70 |
-
do_sample=
|
| 71 |
pad_token_id=tokenizer.eos_token_id,
|
| 72 |
-
use_cache=True,
|
| 73 |
)
|
| 74 |
|
| 75 |
-
response = tokenizer.decode(
|
| 76 |
-
output_ids[0],
|
| 77 |
-
skip_special_tokens=True
|
| 78 |
-
)
|
| 79 |
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
response = response.split(token)[-1]
|
| 84 |
|
| 85 |
-
return response.strip()
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
# Gradio UI
|
| 89 |
-
# βββββββββββββββββββββββββββββββββββββββββββββ
|
| 90 |
demo = gr.Interface(
|
| 91 |
fn=generate_sql,
|
| 92 |
-
inputs=gr.Textbox(
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
),
|
| 97 |
-
outputs=gr.Textbox(
|
| 98 |
-
label="Generated SQL",
|
| 99 |
-
lines=8,
|
| 100 |
-
),
|
| 101 |
-
title="SQL Chat β Phi-3-mini (CPU)",
|
| 102 |
-
description=(
|
| 103 |
-
"CPU-only Hugging Face Space.\n"
|
| 104 |
-
"First response may take 60β180 seconds. "
|
| 105 |
-
"Subsequent requests are faster."
|
| 106 |
-
),
|
| 107 |
-
examples=[
|
| 108 |
-
["Find duplicate emails in users table"],
|
| 109 |
-
["Top 5 highest paid employees"],
|
| 110 |
-
["Count orders per customer last month"],
|
| 111 |
-
["Delete duplicate rows based on email"],
|
| 112 |
-
],
|
| 113 |
-
cache_examples=False,
|
| 114 |
)
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
# βββββββββββββββββββββββββββββββββββββββββββββ
|
| 119 |
if __name__ == "__main__":
|
| 120 |
-
|
| 121 |
-
demo.launch(
|
| 122 |
-
server_name="0.0.0.0",
|
| 123 |
-
ssr_mode=False, # important: avoids asyncio FD bug
|
| 124 |
-
show_error=True,
|
| 125 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import warnings
|
| 2 |
+
warnings.filterwarnings("ignore")
|
| 3 |
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
from peft import PeftModel
|
| 8 |
|
| 9 |
+
# βββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
| 10 |
BASE_MODEL = "unsloth/Phi-3-mini-4k-instruct"
|
| 11 |
LORA_PATH = "saadkhi/SQL_Chat_finetuned_model"
|
| 12 |
|
| 13 |
MAX_NEW_TOKENS = 180
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
+
model = None
|
| 16 |
+
tokenizer = None
|
| 17 |
+
|
| 18 |
+
# βββββββββββββββββββββββββββββ
|
| 19 |
+
# Lazy load (VERY IMPORTANT)
|
| 20 |
+
# βββββββββββββββββββββββββββββ
|
| 21 |
+
def load_model():
|
| 22 |
+
global model, tokenizer
|
| 23 |
+
|
| 24 |
+
if model is not None:
|
| 25 |
+
return
|
| 26 |
+
|
| 27 |
+
print("π Loading model (first request only)...")
|
| 28 |
+
|
| 29 |
+
base = AutoModelForCausalLM.from_pretrained(
|
| 30 |
+
BASE_MODEL,
|
| 31 |
+
device_map="cpu",
|
| 32 |
+
torch_dtype=torch.float16, # lighter
|
| 33 |
+
low_cpu_mem_usage=True,
|
| 34 |
+
trust_remote_code=True,
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
base = PeftModel.from_pretrained(base, LORA_PATH)
|
| 38 |
+
|
| 39 |
+
print("Merging LoRA...")
|
| 40 |
+
model_loaded = base.merge_and_unload()
|
| 41 |
+
|
| 42 |
+
tokenizer_loaded = AutoTokenizer.from_pretrained(BASE_MODEL)
|
| 43 |
+
|
| 44 |
+
model_loaded.eval()
|
| 45 |
|
| 46 |
+
model = model_loaded
|
| 47 |
+
tokenizer = tokenizer_loaded
|
| 48 |
|
| 49 |
+
print("β
Model ready")
|
| 50 |
|
| 51 |
+
# βββββββββββββββββββββββββββββ
|
| 52 |
+
def generate_sql(question):
|
| 53 |
+
if not question.strip():
|
| 54 |
+
return "Enter a question"
|
| 55 |
|
| 56 |
+
load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
messages = [{"role": "user", "content": question}]
|
|
|
|
|
|
|
| 59 |
|
| 60 |
input_ids = tokenizer.apply_chat_template(
|
| 61 |
messages,
|
|
|
|
| 68 |
output_ids = model.generate(
|
| 69 |
input_ids=input_ids,
|
| 70 |
max_new_tokens=MAX_NEW_TOKENS,
|
| 71 |
+
temperature=0.0,
|
| 72 |
+
do_sample=False,
|
| 73 |
pad_token_id=tokenizer.eos_token_id,
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
+
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
for t in ["<|assistant|>", "<|user|>", "<|end|>"]:
|
| 79 |
+
if t in response:
|
| 80 |
+
response = response.split(t)[-1]
|
|
|
|
| 81 |
|
| 82 |
+
return response.strip()
|
| 83 |
|
| 84 |
+
# βββββββββββββββββββββββββββββ
|
|
|
|
|
|
|
| 85 |
demo = gr.Interface(
|
| 86 |
fn=generate_sql,
|
| 87 |
+
inputs=gr.Textbox(lines=3, label="SQL Question"),
|
| 88 |
+
outputs=gr.Textbox(lines=8, label="SQL"),
|
| 89 |
+
title="SQL Chat Phi-3 CPU",
|
| 90 |
+
description="First request loads model (60-120s)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
+
demo.queue(concurrency_count=1, max_size=5)
|
| 94 |
+
|
|
|
|
| 95 |
if __name__ == "__main__":
|
| 96 |
+
demo.launch(server_name="0.0.0.0", show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|