saad177 commited on
Commit
53a7cf9
1 Parent(s): adc8fa2

delete useless files

Browse files
Files changed (5) hide show
  1. README.md +0 -12
  2. test.py +0 -48
  3. testchat.py +0 -50
  4. testcorcel.py +0 -79
  5. testcorcel2.py +0 -75
README.md DELETED
@@ -1,12 +0,0 @@
1
- ---
2
- title: Diabetes Prediction
3
- emoji: 💻
4
- colorFrom: red
5
- colorTo: purple
6
- sdk: gradio
7
- sdk_version: 4.10.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
test.py DELETED
@@ -1,48 +0,0 @@
1
- import gradio as gr
2
- import matplotlib.pyplot as plt
3
- import shap
4
- import hopsworks
5
- import pandas as pd
6
- import joblib
7
-
8
- # Assuming you have your model and data defined elsewhere
9
- project = hopsworks.login(
10
- project="SonyaStern_Lab1",
11
- api_key_value="c9StuuVQPoMUeXWe.jB2XeWcI8poKUN59W13MxAbMemzY7SChOnX151GtTFNhysBBUPMRuEp5IK7SE3i1",
12
- )
13
- mr = project.get_model_registry()
14
- model = mr.get_model("diabetes_model", version=1)
15
- model_dir = model.download()
16
- model = joblib.load(model_dir + "/diabetes_model.pkl")
17
- rf_model = model.steps[-1][1] # Load your model
18
- df = pd.DataFrame(
19
- [[20, 20, 30, 40]],
20
- columns=["age", "bmi", "hba1c_level", "blood_glucose_level"],
21
- )
22
-
23
-
24
- def generate_plots():
25
- # Create the first plot as before
26
- fig1, ax1 = plt.subplots()
27
- ax1.plot([1, 2, 3], [4, 5, 6])
28
- ax1.set_title("Plot 1")
29
-
30
- # Generate the SHAP waterfall plot for fig2
31
- fig2 = shap.plots.waterfall(
32
- shap.Explanation(
33
- values=shap.Explainer(rf_model).shap_values(df)[1][0],
34
- base_values=shap.Explainer(rf_model).expected_value[1],
35
- )
36
- )
37
-
38
- return fig1, fig2
39
-
40
-
41
- with gr.Blocks() as demo:
42
- with gr.Row():
43
- gr.Plot(generate_plots()[0]) # Display first plot in the first row
44
-
45
- with gr.Row():
46
- gr.Plot(generate_plots()[1]) # Display SHAP waterfall plot in the second row
47
-
48
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
testchat.py DELETED
@@ -1,50 +0,0 @@
1
- import gradio as gr
2
- import matplotlib.pyplot as plt
3
- import shap
4
- import hopsworks
5
- import pandas as pd
6
- import joblib
7
-
8
- project = hopsworks.login(
9
- project="SonyaStern_Lab1",
10
- api_key_value="c9StuuVQPoMUeXWe.jB2XeWcI8poKUN59W13MxAbMemzY7SChOnX151GtTFNhysBBUPMRuEp5IK7SE3i1",
11
- )
12
- mr = project.get_model_registry()
13
- model = mr.get_model("diabetes_model", version=1)
14
- model_dir = model.download()
15
- model = joblib.load(model_dir + "/diabetes_model.pkl")
16
- rf_model = model.steps[-1][1] # Load your model
17
- df = pd.DataFrame(
18
- [[20, 20, 30, 40]],
19
- columns=["age", "bmi", "hba1c_level", "blood_glucose_level"],
20
- )
21
-
22
-
23
- def generate_plots():
24
- # Create the first plot as before
25
- fig1, ax1 = plt.subplots()
26
- ax1.plot([1, 2, 3], [4, 5, 6])
27
- ax1.set_title("Plot 1")
28
-
29
- # Generate the SHAP waterfall plot for fig2
30
- explainer = shap.Explainer(rf_model)
31
- shap_values = explainer.shap_values(df)[1] # Select SHAP values for class 1
32
- shap_values_exp = shap.Explanation(
33
- values=shap_values[0], base_values=explainer.expected_value[1]
34
- )
35
- ax2 = shap.plots.waterfall(
36
- shap_values_exp, show=False
37
- ) # Get the axis for the waterfall plot
38
-
39
- return fig1, ax2
40
-
41
-
42
- with gr.Blocks() as demo:
43
- with gr.Row():
44
- gr.Plot(generate_plots()[0]) # Display first plot in the first row
45
-
46
- with gr.Row():
47
- _, ax2 = generate_plots()
48
- gr.Plot(ax2) # Display SHAP waterfall plot in the second row
49
-
50
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
testcorcel.py DELETED
@@ -1,79 +0,0 @@
1
- import gradio as gr
2
- import matplotlib.pyplot as plt
3
- import shap
4
- import hopsworks
5
- import pandas as pd
6
- import joblib
7
- from sklearn.pipeline import make_pipeline
8
-
9
- df = pd.DataFrame(
10
- [[20, 20, 30, 40]],
11
- columns=["age", "bmi", "hba1c_level", "blood_glucose_level"],
12
- )
13
-
14
-
15
- # Assuming the hopsworks login and model retrieval code works as expected
16
- project = hopsworks.login(
17
- project="SonyaStern_Lab1",
18
- api_key_value="c9StuuVQPoMUeXWe.jB2XeWcI8poKUN59W13MxAbMemzY7SChOnX151GtTFNhysBBUPMRuEp5IK7SE3i1",
19
- )
20
- mr = project.get_model_registry()
21
- model = mr.get_model("diabetes_model", version=1)
22
- model_dir = model.download()
23
- model = joblib.load(model_dir + "/diabetes_model.pkl")
24
- print("printing model pipeline:", model)
25
-
26
- rf_classifier = model.named_steps["randomforestclassifier"]
27
-
28
- transformer_pipeline = make_pipeline(
29
- *[
30
- step
31
- for name, step in model.named_steps.items()
32
- if name != "randomforestclassifier"
33
- ]
34
- )
35
-
36
- transformed_df = transformer_pipeline.transform(df)
37
-
38
-
39
- # rf_model = model.steps[-1][1] # Load your model
40
-
41
-
42
- def generate_plots():
43
- # Create the first plot as before
44
- fig1, ax1 = plt.subplots()
45
- ax1.plot([1, 2, 3], [4, 5, 6])
46
- ax1.set_title("Plot 1")
47
-
48
- # Generate the SHAP waterfall plot for fig2
49
- explainer = shap.TreeExplainer(rf_classifier)
50
-
51
- shap_values = explainer.shap_values(transformed_df)
52
- predicted_class = rf_classifier.predict(transformed_df)[0]
53
- shap_values_for_predicted_class = shap_values[predicted_class]
54
- # base_value = explainer.expected_value[1]
55
-
56
- fig2 = plt.figure() # Create a new figure for SHAP plot
57
- shap_explanation = shap.Explanation(
58
- values=shap_values_for_predicted_class[0],
59
- base_values=explainer.expected_value[predicted_class],
60
- data=transformed_df[0],
61
- feature_names=df.columns.tolist(),
62
- )
63
- shap.waterfall_plot(shap_explanation)
64
- plt.title("SHAP Waterfall Plot") # Optionally set a title for the SHAP plot
65
-
66
- return fig1, fig2
67
-
68
-
69
- # Generate plots once and store them
70
- fig1, fig2 = generate_plots()
71
-
72
- with gr.Blocks() as demo:
73
- with gr.Row():
74
- gr.Plot(fig1) # Display first plot in the first row
75
-
76
- with gr.Row():
77
- gr.Plot(fig2) # Display SHAP waterfall plot in the second row
78
-
79
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
testcorcel2.py DELETED
@@ -1,75 +0,0 @@
1
- import gradio as gr
2
- import matplotlib.pyplot as plt
3
- import shap
4
- import hopsworks
5
- import pandas as pd
6
- import joblib
7
- from sklearn.pipeline import make_pipeline
8
-
9
- df = pd.DataFrame(
10
- [[20, 20, 30, 40]],
11
- columns=["age", "bmi", "hba1c_level", "blood_glucose_level"],
12
- )
13
-
14
-
15
- # Assuming the hopsworks login and model retrieval code works as expected
16
- project = hopsworks.login(
17
- project="SonyaStern_Lab1",
18
- api_key_value="c9StuuVQPoMUeXWe.jB2XeWcI8poKUN59W13MxAbMemzY7SChOnX151GtTFNhysBBUPMRuEp5IK7SE3i1",
19
- )
20
- mr = project.get_model_registry()
21
- model = mr.get_model("diabetes_gan_model", version=1)
22
- model_dir = model.download()
23
- model = joblib.load(model_dir + "/diabetes_gan_model.pkl")
24
- print("printing model pipeline:", model)
25
-
26
- rf_classifier = model.named_steps["randomforestclassifier"]
27
-
28
- transformer_pipeline = make_pipeline(
29
- *[
30
- step
31
- for name, step in model.named_steps.items()
32
- if name != "randomforestclassifier"
33
- ]
34
- )
35
-
36
- transformed_df = transformer_pipeline.transform(df)
37
-
38
-
39
- # rf_model = model.steps[-1][1] # Load your model
40
-
41
-
42
- def generate_plots():
43
- # Create the first plot as before
44
- fig1, ax1 = plt.subplots()
45
- ax1.plot([1, 2, 3], [4, 5, 6])
46
- ax1.set_title("Plot 1")
47
-
48
- # Generate the SHAP waterfall plot for fig2
49
- explainer = shap.TreeExplainer(rf_classifier)
50
-
51
- shap_values = explainer.shap_values(transformed_df)
52
- predicted_class = rf_classifier.predict(transformed_df)[0]
53
- shap_values_for_predicted_class = shap_values[predicted_class]
54
- # base_value = explainer.expected_value[1]
55
-
56
- fig2 = plt.figure() # Create a new figure for SHAP plot
57
- shap.waterfall_plot(
58
- explainer.expected_value[predicted_class], shap_values_for_predicted_class[0]
59
- )
60
- plt.title("SHAP Waterfall Plot") # Optionally set a title for the SHAP plot
61
-
62
- return fig1, fig2
63
-
64
-
65
- # Generate plots once and store them
66
- fig1, fig2 = generate_plots()
67
-
68
- with gr.Blocks() as demo:
69
- with gr.Row():
70
- gr.Plot(fig1) # Display first plot in the first row
71
-
72
- with gr.Row():
73
- gr.Plot(fig2) # Display SHAP waterfall plot in the second row
74
-
75
- demo.launch()