Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import List, Tuple
|
| 3 |
+
|
| 4 |
+
import faiss
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import gradio as gr
|
| 11 |
+
from huggingface_hub import hf_hub_download
|
| 12 |
+
from transformers import (
|
| 13 |
+
CLIPModel,
|
| 14 |
+
CLIPProcessor,
|
| 15 |
+
AutoProcessor,
|
| 16 |
+
BlipForConditionalGeneration,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# =========================
|
| 20 |
+
# CONFIG
|
| 21 |
+
# =========================
|
| 22 |
+
|
| 23 |
+
DATASET_REPO = "saad003/Dataset_final" # where embeddings + faiss + metadata live
|
| 24 |
+
IMAGES_REPO = "saad003/images" # where the radiology images live
|
| 25 |
+
|
| 26 |
+
CLIP_MODEL_ID = "openai/clip-vit-base-patch32"
|
| 27 |
+
CAPTION_MODEL_ID = "WafaaFraih/blip-roco-radiology-captioning" # BLIP radiology
|
| 28 |
+
|
| 29 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
+
|
| 31 |
+
# =========================
|
| 32 |
+
# LOAD MODELS
|
| 33 |
+
# =========================
|
| 34 |
+
|
| 35 |
+
print("Loading CLIP model...")
|
| 36 |
+
clip_model = CLIPModel.from_pretrained(CLIP_MODEL_ID).to(DEVICE)
|
| 37 |
+
clip_processor = CLIPProcessor.from_pretrained(CLIP_MODEL_ID)
|
| 38 |
+
clip_model.eval()
|
| 39 |
+
|
| 40 |
+
print("Loading caption model...")
|
| 41 |
+
caption_processor = AutoProcessor.from_pretrained(CAPTION_MODEL_ID)
|
| 42 |
+
caption_model = BlipForConditionalGeneration.from_pretrained(
|
| 43 |
+
CAPTION_MODEL_ID
|
| 44 |
+
).to(DEVICE)
|
| 45 |
+
caption_model.eval()
|
| 46 |
+
|
| 47 |
+
# =========================
|
| 48 |
+
# LOAD INDEX + METADATA
|
| 49 |
+
# =========================
|
| 50 |
+
|
| 51 |
+
print("Loading FAISS index + embeddings + metadata...")
|
| 52 |
+
|
| 53 |
+
embeddings_path = hf_hub_download(DATASET_REPO, "embeddings.npy")
|
| 54 |
+
index_path = hf_hub_download(DATASET_REPO, "image_index.faiss")
|
| 55 |
+
|
| 56 |
+
EMBEDDINGS = np.load(embeddings_path).astype("float32")
|
| 57 |
+
INDEX = faiss.read_index(index_path)
|
| 58 |
+
|
| 59 |
+
# metadata: parquet preferred, else csv
|
| 60 |
+
try:
|
| 61 |
+
meta_path = hf_hub_download(DATASET_REPO, "metadata.parquet")
|
| 62 |
+
METADATA = pd.read_parquet(meta_path)
|
| 63 |
+
print("Loaded metadata.parquet")
|
| 64 |
+
except Exception:
|
| 65 |
+
meta_path = hf_hub_download(DATASET_REPO, "metadata.csv")
|
| 66 |
+
METADATA = pd.read_csv(meta_path)
|
| 67 |
+
print("Loaded metadata.csv")
|
| 68 |
+
|
| 69 |
+
print("Metadata columns:", list(METADATA.columns))
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def pick_column(candidates: List[str]) -> str:
|
| 73 |
+
"""Pick first existing column name from candidates."""
|
| 74 |
+
for c in candidates:
|
| 75 |
+
if c in METADATA.columns:
|
| 76 |
+
return c
|
| 77 |
+
raise RuntimeError(
|
| 78 |
+
f"None of {candidates} found in metadata columns: {list(METADATA.columns)}"
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# Adjust these if my guesses are wrong; check your metadata file on HF
|
| 83 |
+
IMAGE_COL = pick_column(
|
| 84 |
+
["image_path", "img_path", "filepath", "image", "image_file", "path"]
|
| 85 |
+
)
|
| 86 |
+
CAPTION_COL = pick_column(["caption", "report", "text", "caption_text"])
|
| 87 |
+
|
| 88 |
+
print("Using IMAGE_COL =", IMAGE_COL)
|
| 89 |
+
print("Using CAPTION_COL =", CAPTION_COL)
|
| 90 |
+
|
| 91 |
+
# =========================
|
| 92 |
+
# HELPER FUNCTIONS
|
| 93 |
+
# =========================
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def load_image_for_row(row: pd.Series) -> Image.Image:
|
| 97 |
+
"""
|
| 98 |
+
Load one image given a metadata row.
|
| 99 |
+
Assumes metadata[IMAGE_COL] is a relative path inside saad003/images repo.
|
| 100 |
+
"""
|
| 101 |
+
rel_path = str(row[IMAGE_COL])
|
| 102 |
+
local_path = hf_hub_download(IMAGES_REPO, rel_path)
|
| 103 |
+
img = Image.open(local_path).convert("RGB")
|
| 104 |
+
return img
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
@torch.no_grad()
|
| 108 |
+
def embed_query_image(image: Image.Image) -> np.ndarray:
|
| 109 |
+
"""Embed query image with the same CLIP model used during indexing."""
|
| 110 |
+
inputs = clip_processor(images=image, return_tensors="pt").to(DEVICE)
|
| 111 |
+
features = clip_model.get_image_features(**inputs)
|
| 112 |
+
# normalize for cosine similarity
|
| 113 |
+
features = features / features.norm(dim=-1, keepdim=True)
|
| 114 |
+
return features.cpu().numpy().astype("float32")
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def retrieve_similar(image: Image.Image, k: int = 5) -> pd.DataFrame:
|
| 118 |
+
"""Return top-k similar rows from METADATA."""
|
| 119 |
+
query_emb = embed_query_image(image)
|
| 120 |
+
D, I = INDEX.search(query_emb, k)
|
| 121 |
+
rows = METADATA.iloc[I[0]].copy()
|
| 122 |
+
rows["distance"] = D[0]
|
| 123 |
+
return rows
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
@torch.no_grad()
|
| 127 |
+
def generate_caption(image: Image.Image, neighbors: pd.DataFrame) -> str:
|
| 128 |
+
"""Generate caption for query image, using neighbors' captions as context."""
|
| 129 |
+
neighbor_captions = neighbors[CAPTION_COL].astype(str).tolist()
|
| 130 |
+
context = " | ".join(neighbor_captions[:3])
|
| 131 |
+
|
| 132 |
+
prompt = (
|
| 133 |
+
"Radiology image. Similar case descriptions: "
|
| 134 |
+
f"{context}. Generate a concise radiology-style caption for this new image."
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
inputs = caption_processor(
|
| 138 |
+
images=image,
|
| 139 |
+
text=prompt,
|
| 140 |
+
return_tensors="pt",
|
| 141 |
+
).to(DEVICE)
|
| 142 |
+
|
| 143 |
+
out = caption_model.generate(
|
| 144 |
+
**inputs,
|
| 145 |
+
max_new_tokens=64,
|
| 146 |
+
num_beams=3,
|
| 147 |
+
do_sample=False,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
caption = caption_processor.decode(out[0], skip_special_tokens=True).strip()
|
| 151 |
+
return caption
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
def detect_modality(text: str) -> str:
|
| 155 |
+
t = text.lower()
|
| 156 |
+
modalities = {
|
| 157 |
+
"CT": ["ct", "computed tomography"],
|
| 158 |
+
"X-ray": ["x-ray", "xray", "radiograph", "chest x-ray", "cxr"],
|
| 159 |
+
"MRI": ["mri", "magnetic resonance"],
|
| 160 |
+
"Ultrasound": ["ultrasound", "sonography", "usg"],
|
| 161 |
+
"PET": ["pet scan", "pet-ct", "positron emission tomography"],
|
| 162 |
+
"Mammography": ["mammogram", "mammography"],
|
| 163 |
+
}
|
| 164 |
+
|
| 165 |
+
for name, kws in modalities.items():
|
| 166 |
+
if any(kw in t for kw in kws):
|
| 167 |
+
return name
|
| 168 |
+
return "Unknown"
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def run_pipeline(
|
| 172 |
+
query_image: Image.Image, k: int = 5
|
| 173 |
+
) -> Tuple[List[Tuple[Image.Image, str]], str, str]:
|
| 174 |
+
"""
|
| 175 |
+
Full pipeline:
|
| 176 |
+
- retrieve neighbors
|
| 177 |
+
- load their images
|
| 178 |
+
- generate caption for query
|
| 179 |
+
- detect modality
|
| 180 |
+
"""
|
| 181 |
+
neighbors = retrieve_similar(query_image, k=k)
|
| 182 |
+
|
| 183 |
+
neighbor_images = [load_image_for_row(row) for _, row in neighbors.iterrows()]
|
| 184 |
+
neighbor_captions = neighbors[CAPTION_COL].astype(str).tolist()
|
| 185 |
+
|
| 186 |
+
gallery = [(img, cap) for img, cap in zip(neighbor_images, neighbor_captions)]
|
| 187 |
+
|
| 188 |
+
generated_caption = generate_caption(query_image, neighbors)
|
| 189 |
+
|
| 190 |
+
modality = detect_modality(
|
| 191 |
+
generated_caption + " " + " ".join(neighbor_captions)
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
return gallery, generated_caption, modality
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# =========================
|
| 198 |
+
# GRADIO APP
|
| 199 |
+
# =========================
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def gradio_infer(image, k):
|
| 203 |
+
if image is None:
|
| 204 |
+
return [], "No image provided", ""
|
| 205 |
+
|
| 206 |
+
k = int(k)
|
| 207 |
+
gallery, caption, modality = run_pipeline(image, k=k)
|
| 208 |
+
return gallery, caption, modality
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
demo = gr.Interface(
|
| 212 |
+
fn=gradio_infer,
|
| 213 |
+
inputs=[
|
| 214 |
+
gr.Image(type="pil", label="Query radiology image"),
|
| 215 |
+
gr.Slider(1, 12, value=5, step=1, label="Number of similar images"),
|
| 216 |
+
],
|
| 217 |
+
outputs=[
|
| 218 |
+
gr.Gallery(label="Similar images (with captions)").style(preview=True),
|
| 219 |
+
gr.Textbox(label="Generated caption for query image"),
|
| 220 |
+
gr.Textbox(label="Detected modality"),
|
| 221 |
+
],
|
| 222 |
+
title="Radiology Image Retrieval + Captioning",
|
| 223 |
+
description="Research demo. Not for clinical use.",
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
if __name__ == "__main__":
|
| 227 |
+
demo.launch()
|